Download presentation
Presentation is loading. Please wait.
1
Hadronic Moments in Semileptonic B Decays Ramon Miquel Lawrence Berkeley National Laboratory (for the CDF II Collaboration)
2
7/2/04Ramon Miquel BEACH 042 F theory evaluated using OPE in HQET: expansion in s and 1/m B powers: O(1/m B ) 1 parameter: (Bauer et al., PRD 67 (2003) 071301) O(1/m B 2 ) 2 more parameters: 1, 2 O(1/m B 3 ) 6 more parameters: 1, 2, T 1-4 Motivation (I) (4S), LEP/SLD, CDF measurements. Experimental |V cb |~1% Theory with pert. and non-pert. corrections. |V cb |~2.5% Most precise determination of V cb comes from sl (“inclusive” determination):
3
7/2/04Ramon Miquel BEACH 043 Motivation (II) Hadronic moments: B X c l, recoil mass M(X c ) Leptonic moments: B X c l, lepton E in B rest frame Photonic moments: Photon energy in b s (CLEO, DELPHI, BABAR) (CLEO) (CLEO, DELPHI, BABAR, CDFII) Many inclusive observables can be written using the same expansion (same non-perturbative parameters): the spectral moments: Constrain the unknown non-pert. parameters and reduce |V cb | uncertainty. With enough measurements: test of underlying assumptions (duality…).
4
7/2/04Ramon Miquel BEACH 044 What is X c ? ~25% of semi-leptonic width is poorly known Higher mass states: D**Semi-leptonic widths (PDG 03): Br (%) B + X c l 10.89 0.26 B + D* l 6.00 0.24 B + D l 2.23 0.15 (b/B + /B 0 combination, b u subtracted) Possible D’ D ( * ) contributions neglected: No experimental evidence so far DELPHI limit: We assume no D’ contribution in our sample
5
7/2/04Ramon Miquel BEACH 045 Analysis Strategy Typical mass spectrum M(X 0 c ) (Monte Carlo): D 0 and D* 0 well-known measure only f** only shape needed 1) Measure f**(s H ) 2) Correct for background, acceptances, bias moments of D** 3) Add D and D* M 1,M 2 4) Extract , 1
6
7/2/04Ramon Miquel BEACH 046 Channels −D **0 D + OK –D **0 D 0 0 Not reconstructed. Half the rate of D + –D **0 D *+ D *+ D 0 + OK D *+ D + 0 Not reconstructed. Feed-down to D + –D **0 D *0 0 Not reconstructed. Half the rate of D *+ Must reconstruct all channels to get all the D ** states. However CDF has limited capability for neutrals B 0 D ** l + always leads to neutral particles ignore it B - D **0 l better, use isospin for missing channels:
7
7/2/04Ramon Miquel BEACH 047 D **0 D *+ **- D 0 *+ (Br=67.7%) K - + (Br=3.8%) K - + - + (Br=7.5%) K - + 0 (Br=13.1%) Event Topology Exclusive reconstruction of D ** : D **0 D + **- K - + + (Br=9.1%) “D + ”“D* + ”
8
7/2/04Ramon Miquel BEACH 048 Backgrounds Combinatorial background under the D ( * ) peaks: sideband subtraction Physics background: B D ( * )+ D s , D (s) Xl MC, subtracted Prompt pions faking **: fragmentation underlying event separate B and primary vertices (kills also prompt charm) use impact parameters to discriminate model: wrong-sign ** + combinations Feed-down in signal: D** 0 D* + ( D + 0 ) irreducible background to D** 0 D + . subtracted using data: shape from D 0 in D** 0 D* + ( D 0 + ) rate: ½ (isospin) x eff. x BR
9
7/2/04Ramon Miquel BEACH 049 Lepton + D ( * )+ Reconstruction Lepton + D ( * )+ : D vertex: 3D l+D(+ * ) vertex (“B”): 3D L xy (B) > 500 m M(B) < 5.3 GeV Data Sample: e/ + displaced track ~ 180 pb -1 ( Sept 2003) Track Selection: e/ : p T > 4 GeV other: p T > 0.4 GeV Total: ~ 28000 events
10
7/2/04Ramon Miquel BEACH 0410 ** Selection Based on topology: impact parameter significances w.r.t. primary, B and D vertices ** 3D IP signif. wrt BV ** 2D IP signif. wrt PV p T > 0.4 GeV R < 1.0 |d 0 PV / | > 3.0 |d 0 BV / | < 2.5 |d 0 DV / | > 0.8 L xy B D > 500 m Cuts are optimized using MC and background data: Additional cuts only for D + :
11
7/2/04Ramon Miquel BEACH 0411 Raw m** Distribution Measured in m**, shifted by M(D ( * )+ ), side-band subtracted. D 1,D 1 *,D 2 * D 2 *,D 0 * Feed-down
12
7/2/04Ramon Miquel BEACH 0412 Efficiency Corrections 1) Correct the raw mass for any dependence of reco on M(D**): Possible dependence on the D** species (spin). Monte-Carlo for all D** (Goity-Roberts for non-resonant), cross-checked with pure phase space decays. 2) Cut on lepton energy in B rest frame: Theoretical predictions need well-defined p l * cut. We can’t measure p l *, but we can correct our measurement to a given cut: p l * > 700 MeV/c.
13
7/2/04Ramon Miquel BEACH 0413 Corrected Mass and D** Moments Procedure: Unbinned procedure using weighted events. Assign negative weights to background samples. Propagate efficiency corrections to weights. Take care of the D + / D* + relative normalization. Compute mean and sigma of distribution. Results: No Fit !
14
7/2/04Ramon Miquel BEACH 0414 Final Results Pole mass scheme 1S mass scheme 0.61 0.69
15
7/2/04Ramon Miquel BEACH 0415 Systematic Errors m 1 (GeV 2 ) m 2 (GeV 4 ) M 1 (GeV 2 ) M 2 (GeV 4 ) (GeV) 1 (GeV 2 ) Stat.0.160.690.0370.250.0750.055 Syst.0.080.200.0650.120.0900.082 Mass resolution0.020.130.0050.040.0120.009 Eff. Corr. (data)0.030.130.0060.050.0140.011 Eff. Corr. (MC)0.060.050.0160.030.0170.006 Bkgd. (scale)0.010.030.0020.010.0030.002 Physics bkgd.0.010.020.0020.010.0040.002 D + / D *+ BR0.010.020.0020.010.0040.002 D + / D *+ Eff.0.020.030.0040.010.0050.002 Semileptonic BRs0.0620.100.0640.022 11 0.0410.069 TiTi 0.0320.031 ss 0.0180.007 m b, m c 0.0010.008 Choice of p l * cut0.0190.009
16
7/2/04Ramon Miquel BEACH 0416 Comparison with Previous Measurements Pole mass scheme
17
7/2/04Ramon Miquel BEACH 0417 Summary First measurement of hadronic moments in semileptonic B decays performed at a hadron collider. Good agreement with HQET and previous determinations. Competitive with other experiments. Little model dependency. No assumptions on shape or rate of D** components. Increased statistics and improved tracking will lead to substantially more precise results in the near future.
18
BACK-UP SLIDES
19
7/2/04Ramon Miquel BEACH 0419 CKM and V cb | V cb | = A 2 (defines the scale of UT)
20
7/2/04Ramon Miquel BEACH 0420 |V cb | from inclusive B decays Experiment: large statistics on BR(B X c - ) and B and small systematics V cb measurements |V cb | from exclusive B decays Large statistics on B d 0 D (*) - available and new measurements are coming Present precision (5%) is systematics limited : Experiments: D** states, D’s BR Theory: form factor extrapolation, corrections to F (1)=1 can be reduced in the future |V cb | excl =(42.1 1.1 exp 1.9 theo ) 10 -3 (PDG 2002, V cb review) |V cb | incl = (40.4 ± 0.5 exp ± 0.5 , ± 0.8 theo ) 10 -3 (PDG 2002, V cb review)
21
7/2/04Ramon Miquel BEACH 0421 Lepton + D Reconstruction Lepton + D ( * )+ : D vertex: 3D l+D(+ * ) vertex (“B”): 3D L xy (B) > 500 m L xy (D /B ) > -200 m m(B) < 5.3 GeV Data Sample: e/ + displaced track ~ 180 pb -1 ( Sept 2003) Track Selection: e/ : p T > 4 GeV other: p T > 0.4 GeV
22
7/2/04Ramon Miquel BEACH 0422 D* + Reconstruction and Yields D* + channels: m* M(D 0 * ) – M(D 0 ) D ( * )+ l (+cc) yields: ~ 28000 events
23
7/2/04Ramon Miquel BEACH 0423 Monte-Carlo Validation (I) K , e K , e K , K 0, e K , K , e MC vs. semileptonic sample: Matching 2 probability for those plots: 67%74%23% 43%69%87%
24
7/2/04Ramon Miquel BEACH 0424 Monte-Carlo Validation (II) Relative yield prediction K3 /K : (cross-check) R data = 0.77±0.02 R pred = 0.80±0.04 R pred /R data = 1.04±0.06 efficiency for adding tracks understood Relative yield prediction K2 /K : (needed for D + /D* normalization) Two methods (a,b) to derive this BR a)Based on inclusive b D (*)+ l b)Based on exclusive B D (*)+ l, D ** l + PDG BR + MC efficiency ratios uncertainties in Br (incl.) and D** spectroscopy (excl.) compromise prediction 1. – 0.87 = 13% used as systematics R data R pred R pred /R data 3.71±0.083.31±0.580.89±0.16 3.71±0.083.23±0.290.87±0.08
25
7/2/04Ramon Miquel BEACH 0425 Impact Parameters in MC Comparison data/MC for IP: (worst case) KK ** 2D IP signif. wrt PV KK ** 3D IP signif. wrt BV Residual corrections: derived from data: * non-SVT D daughters (p T > 1.5 GeV) corrections from double ratios in p T in m**
26
7/2/04Ramon Miquel BEACH 0426 Background Subtraction Use mass side-bands to subtract combinatorial background. Use D* + [ D 0 + ] to subtract feed-down from D* + [ D + 0 ] to D + . Use wrong-sign ** + l combinations to subtract prompt background to **. –Possible charge asymmetry of prompt background studied with fully reconstructed B’s: 4% contribution at most. Possible D’ D ( * ) contributions neglected: –No experimental evidence so far. –DELPHI limit: We assume no D’ contribution in our sample
27
7/2/04Ramon Miquel BEACH 0427 Combination with D 0, D* 0 Take M(D 0 ), M(D* 0 ), sl, 0, * from PDG 2003 : − sl 0, * are obtained combining BR’s for B , B 0 and admixture, assuming the widths are identical (not the BR’s themselves), and using f / f 0 = 1.04 ± 0.08 (B ) / (B 0 ) = 1.085 ± 0.017 –Results: BR(B + X 0 c l + l ) = 0.1089 ± 0.0026 BR(B + D 0 l + l ) = 0.0223 ± 0.0015 BR(B + D* 0 l + l ) = 0.0600 ± 0.0024
28
7/2/04Ramon Miquel BEACH 0428 Main Systematics Semileptonic branching ratios when combining D** with D and D* Efficiency corrections from data − Use data-corrected efficiency. vs. pure MC efficiency Efficiency corrections from D** Monte-Carlo − D** states + NR Goity-Roberts vs. pure phase-space Mass resolution: − Dominated by satellite: ± 60 MeV Prompt background scale − Charge correlations WS / RS: ± 4% Other: D + /D* normalization, physics, p l * cut, theory…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.