Presentation is loading. Please wait.

Presentation is loading. Please wait.

RHIC における多粒子相関 森田健司 ( 早大理工 ) 森田健司 ( 早大理工 ) RCNP 研究会 第 2 回 RHIC, SPS での高エネルギー重イオン衝突実験の現象論的解析.

Similar presentations


Presentation on theme: "RHIC における多粒子相関 森田健司 ( 早大理工 ) 森田健司 ( 早大理工 ) RCNP 研究会 第 2 回 RHIC, SPS での高エネルギー重イオン衝突実験の現象論的解析."— Presentation transcript:

1 RHIC における多粒子相関 森田健司 ( 早大理工 ) 森田健司 ( 早大理工 ) RCNP 研究会 第 2 回 RHIC, SPS での高エネルギー重イオン衝突実験の現象論的解析

2 Outline of this talk 2  HBT  Introduction – HBT でわかること  理論的な予想と期待 – Hydrodynamical model, Phase transition  実験事実 – kt dependece, Y dependence from RHIC experiment  “HBT puzzle” – Why puzzle?  “HBT puzzle” – 現状と展望 3  HBT  3 体相関からわかること  Experimental data (by STAR)  Model Analysis Summary

3 HBT in R.H.I.C k1k1k1k1 k2k2k2k2 (x)(x)(x)(x) q=k 1 -k 2 Decomposing into q side, q out, q long Corresponding ‘Size’ R side, R out, R long R long R side R out KTKTKTKT R.H.I.C. – Highly Dynamical System Collective Flow: Symmetry of W.F. Chaotic Source

4 Meanings of Size Parameters in LCMS Chapman, Nix, Heinz, PRC52,2694 (’95)

5 Space-momentum correlation on transverse plane Transverse Transverse suppression at suppression at x<0 enhancement at enhancement at x>0 K T =50 MeV K T =500 MeV *K.M. et al., PRC61,034904 (2000). Measured “size” decreases with k t

6 Theoretical Tool : Hydrodynamics (taken from PHENIX whitepaper) Good Agreement with v 2 by assuming QGP and Hadronic phase. Supporting early thermalization v 2 Spectra Consistent with the thermal picture Best fit with Hydro+RQMD Model

7 Prediction: 1 st order Phase Transition 1 st order P.T. – Softenning of EoS C s 2 = 0 at mixed phase (P = Const) No acceleration in the mixed phase Pratt (’86), Bertsch (’88) Lifetime of the system is prolonged

8 Prediction: HBT signal of QGP Rischke and Gyulassy, NPA608,479 (1996) Scaling Hydrodynamics with Cylindrical Symmetry Scaling Hydrodynamics with Cylindrical Symmetry from 1 st order P.T. to  T ~ 0.1Tc from 1 st order P.T. to  T ~ 0.1Tc Box Profile Box Profile HBT radii v.s. Initial Energy Density HBT radii v.s. Initial Energy Density R out >> R side Long lifetime caused by P.T.

9 実験事実  result for 200A GeV. Similar to 130A GeV results. Excellent consistency among the experiments. Strong k t dependence. Ro ~ Rs ~ R l Ro/Rs ~ (or < 1)

10 実験事実 (2) No rapid change in the excitation function Strong space-momentum correlation in longitudinal direction

11 HBT from Conventional Hydro. Models STAR 130AGeV (PRL87,082301 (’01)) STAR 130AGeV (PRL87,082301 (’01)) Heinz et al.: Scaling+1 st order Heinz et al.: Scaling+1 st order Zschiesche et al.: Scaling+Crossover Zschiesche et al.: Scaling+Crossover Morita et al.: 1 st order, No Boost inv. Morita et al.: 1 st order, No Boost inv. (NPA702,269 (’02)) (PRC65,064902 (’02)) (PRC65,054904 (’02))

12 The RHIC HBT Puzzle Strong anisotropic flow – supports local equilibration Strong anisotropic flow – supports local equilibration i.e. Hydrodynamic description is valid. HBT radii from hydrodynamics HBT radii from hydrodynamics Prediction – large R out due to 1 st order phase transition, small R side, large R long from lifetime Experiment – R out ~ R side (even R out < R side !), smaller R long and R out, larger R side Single particle – well described Single particle – well described by reasonable initial conditions

13 Hybrid model calculation? Soff, Bass, Dumitru, PRL86, 3981 (’01) QGP+1 st order P.T.+Scaling QGP+1 st order P.T.+Scaling Hadron Phase – UrQMD Hadron Phase – UrQMD Long-lived, Dissipative Hadronic Phase Dominates Long-lived, Dissipative Hadronic Phase Dominates Increase with K T Increase with K T v2 and spectra - Best fit with Hydro+RQMD (hybrid) Model STAR PHENIX hydro only hydro+hadronic rescatt Hadron rescattering makes it worse!

14 Lifetime of the system From experimental data  f ~ 9 fm/c Non-central HBT analysis: Evolution of eccentricity – also indicate short (~9fm/c) Lifetime Lifetime in hydro : ~15fm/c

15 Phase transition? Origin of long lifetime of hydro. – 1 st order phase transition Experimental data – many many indication of QGP (energy density, jet quenching, v2, …) No clear evidence of phase transition! (Rapid change of observables, etc) Transport calculation – also supports strongly interacting high density matter. (Lin,Ko, and Pal, Molnar and Gyulassy)

16 Problem – mixed and hadron phase? Crossover case – improve, but still fails to reproduce the data. Modifying hadronic EoS Chemical freeze-out (Hirano, ’02) Introducing chemical potential for each particle species Introducing chemical potential for each particle species Lifetime of fluid is reduced → Smaller R long, but fails R out, R side Lifetime of fluid is reduced → Smaller R long, but fails R out, R side

17 Geometry? Positive x-t correlation (Lin,Ko and Pal, PRL89,152301,(’02)) Opaque source (KM and Muroya, PTP111,93 (’04)) normal opaque

18 Initial fluctuation and Continuous emission Socolowski, Grassi, Hama, Kodama, PRL93, 182301 (’04) 1 random ev.averaged (30) Giving Smaller Size!

19 Parametrization – Hint for the solution? Blast-Wave (Retiere and Lisa, PRC70,044907 (’04)) T=106MeV, R=13fm,  =9fm/c,  =0.003fm/c Buda-Lund (Csanad et al., NPA742,80(’04)) T 0 =210MeV,  0 =7fm/c,  =0fm/c √s = 130 GeVSTAR PHENIX 4 8 0.2 0.4 0.6 0.8 k T (GeV/c) 4 8 4 8 R out (fm) R side (fm) R long (fm) Retiere, Lisa Csorgo et al Cracow (Broniowski et al., nucl-th/0212053) single freeze-out, positive Renk ( Renk., PRC70, 021903,(’04)) Not Boost-invariance, (maybe) positive

20 Summary (I) 実験結果 : Rs~Ro~Rl~ 6-7 fm 実験結果 : Rs~Ro~Rl~ 6-7 fm 実験結果 : Strong space-momentum correlation 実験結果 : Strong space-momentum correlation 実験結果 :  ~ 9fm/c 実験結果 :  ~ 9fm/c HBT puzzle – hydro の結果とは合わない HBT puzzle – hydro の結果とは合わない 原因 – 相転移(以降) 原因 – 相転移(以降) 他の測定量とは consistent – 実験では ” 相転移 ” は見えて いない 他の測定量とは consistent – 実験では ” 相転移 ” は見えて いない 打開へ向けて 打開へ向けて more realistic EoS, Hadronic Stage の理解, Rescattering?

21 3  correlation – Measure of the chaoticity 3  correlation – Measure of the chaoticity 2-body:2-body: (HBT Effect) ‘Measure’ :  Suffer from many effects (Long- lived resonance, Coulomb int., etc...) CoherentChaotic 3-body:3-body: ‘Measure’ : Not affected by long-lived resonances =1 for chaotic source

22 Analysis by STAR Col. quadratic/quartic fit to extract  Extraction of  from r 3 (Q 3 )Chaotic fraction  Using Partial Coherent Model STAR Coll., PRL91,262301 (’03)  ~ 0.8 (80% of pions come from the chaotic source) CentralMid-Central but... = 0.91-0.97 from the above  exp = 0.5 @ Central Au+Au 130A GeV Consistency ?

23 Strategy Extracting from C 2 and  from C 3 (r 3 ) Assumption : dominant background – long lived resonances “True” chaoticity – subtracting contributions from the resonances Thermal model true r 3 : function of C 2 and C 3 Parametrization of the C 2 and the C 3 Parameter Tuning w.r.t. experimental data  Applying models of particle production Consistency check between  and  How chaotic are the pion sources?

24 Extraction of : long-lived resonances at q ~0, contributions from such resonances can be neglected. Gyulassy and Padula, (1988), Heiselberg, (1996), Csorgo et al., (1996)  q : ~ 5-10 MeV in the experiment Estimate # of long-lived resonances – Statistical model Braun-Munziger et al., (1996,1999,2001) (up to  *(1385) ) →  < 5 MeV Performing  2 fitting to particle ratio

25 Extraction of : long-lived resonances (2) Particle ratio from stat. model – integrated w.r.t. momentum exp – measured in each p t bin Assumption : True chaoticity does not depend on particle momenta Averaging exp as Then, Get true using Experimental Data

26 Extraction of  : How to? - Constructing C 2 and C 3 consistent with the experiment Simple model source function : Simultaneous emission, spherically symmetric source “ gauss ” “ exp ” “ cosh ” 3-parameter  2 fitting to experimental data

27 Themal fit : T=158±9 MeV,  B =36±6 MeV,  2 /dof=2.4/5 exp = 0.57±0.06,  true = 0.93±0.08 (22% pions from long-lived resonances) Result : Au+Au@RHIC, STAR minimum  2 : cosh R=15.2 fm, =0.71, =0.64  =0.872±0.097

28 Models  Chaotic Fraction  Mean # of Coh. Sources (Poisson Dist.) Heinz and Zhang, (1997), Nakamura and Seki, (2000) Note : 0 <  < 1 1.Partial Coherent 2.Multicoherent 3.Partial Multicoherent

29 Result : Partial Coherent  pc From From (×0.8) From  S+Pb 0.75 ± 0.120.41 ± 0.05 * 0.14 ± 0.24 Pb+Pb (NA44) 0.84 ± 0.110.53 ± 0.04 --- Pb+Pb (WA98) --- 0.58 ± 0.050.51 ± 0.12 RHIC0.73±0.140.49±0.070.65±0.10 *×0.7

30 Result : Partial Multicoherent Au+Au × 0.8  = 0.75±1.02  = 0.77±7.08 No “Best fit” Solution large  solution is excluded!

31 Summary (2) Develop simultaneous analysis framework of C 2 and C 3 Applied to S+Pb@SPS, Pb+Pb@SPS, Au+Au@RHIC As system size and bombarding energy increase, the system becomes close to a chaotic (thermalized) source Still large uncertainty (especially in ), but systematic behavior seem to be appeared. From a multicoherent source picture of view, chaoticity in the small system comes from chaotic background, while many “clusters” may be formed in the large and high energy system.


Download ppt "RHIC における多粒子相関 森田健司 ( 早大理工 ) 森田健司 ( 早大理工 ) RCNP 研究会 第 2 回 RHIC, SPS での高エネルギー重イオン衝突実験の現象論的解析."

Similar presentations


Ads by Google