Presentation is loading. Please wait.

Presentation is loading. Please wait.

C and Data Structures Baojian Hua

Similar presentations


Presentation on theme: "C and Data Structures Baojian Hua"— Presentation transcript:

1 C and Data Structures Baojian Hua bjhua@ustc.edu.cn
Linked List C and Data Structures Baojian Hua

2 Recap The extensible array-based implementation of linear list:
may be too slow insert or delete operations involve data movement may waste too much space only a small portion of the allocated space is occupied with data General computer science idea: “pay as you go”

3 Polymorphic Abstract Data Types in C
// recall the poly ADT: #ifndef LIST_H #define LIST_H typedef void *poly; typedef struct List_t *List_t; List_t List_new (); int List_length (List_t l); poly List_nth (List_t l, int n); void List_insert (List_t l, poly x, int i); poly List_delete (List_t l, int i); void List_foreach (List_t l, void (*f)(poly)); #endif

4 Implementation Using Linked List
Linked list is a self-reference structure: to simplify operations, we add a unique head node “head” “head” does not belong to the list may hold meta information of the list head

5 Linked List-based Implementation
// Turn the above figure into C, we have: // in file “linkedList.c” #include <stdlib.h> #include “list.h” struct List_t { poly data; list next; }; data next head

6 Operation: “newList” // “new” returns an empty list, which consists of
// a single head node. List_t List_new () { List_t l = malloc (sizeof (*l)); l->data = 0; // Why this? l->next = 0; return l; } /\ l

7 Operation: “length” int List_length (List_t l) {
List_t p = l->next; int n = 0; while (p) { p = p->next; n++; } return n; n==0 data next l p

8 Operation: “length” int List_length (List_t l) {
List_t p = l->next; int n = 0; while (p) { p = p->next; n++; } return n; n==1 data next l p

9 Operation: “length” int List_length (List_t l) {
List_t p = l->next; int n = 0; while (p) { p = p->next; n++; } return n; n==2 data next l p

10 Operation: “length” int List_length (List_t l) {
List_t p = l->next; int n = 0; while (p) { p = p->next; n++; } return n; n==3 data next l p

11 Operation: “nth” poly List_nth (List_t l, int n) {
List_t p = l->next; int i = 0; if (n<0 || n>=List_length(l)) error (“invalid index”); while (i!=n) { p = p->next; i++; } return p;

12 Operation: “nth” n==2 i==0 l … p data next n==2 i==1 l … data p next

13 Operation: “insert” void List_insert (List_t l, poly x, int n) {
// 1. change the “next” field of pointer t; // 2. change the “next” field of element (n-1) …; } n==2 we’d search pointer p l data next data next data next x next t

14 Operation: “insert” void List_insert (List_t l, poly x, int n) {
List_t p; if (n<0 || n>List_length(l)) error (“invalid index”); // search pointer p points to position n-1 p = n? (List_nth (l, n-1)) : l;

15 Operation: “insert” // continued… // Step #1: cook list node:
List_t temp = malloc (sizeof (*temp)); temp->data = x; // Step #2: temp points to n-th data item temp->next = p->next; // Step #3: link temp onto list p->next = temp; return; }

16 Operation: “delete” poly List_delete (List_t l, int n) {
// The key step is to search pointer p // Leave this as exercise. // See Lab #3. …; } n==2 we’d search pointer p l data next data next data next

17 Operation: “foreach” void List_foreach (List_t l, void (*f)(poly)) {
List_t p = l->next; while (p) { f (p->data); p = p->next; } l data next data next data next

18 Linked List Summary Linked list: Several other variants:
better space usage---no waste good time complexity insert or delete take linear time but have to search the data sequential, :-( Several other variants: circular linked list doubly linked list doubly circular linked list

19 Circular Linked List All the pointers forms a circle
Note that the first node has two fields head: points to the head of the list tail: points to the tail of the list l head tail data next data next data next

20 Circular Linked List---Implementation
// in file “clist.c” struct Clist_t { struct node *head; struct node *tail; }; struct node poly data; struct node *next; } head tail data next l

21 Linear List Application #1: Polynomials
where ciR and n Nat uniquely determined by a linear list: For this representation, all the list operations apply

22 Linear List Application: Polynomials
Space waste: Consider this: 20001 items with 3 non-zeros A refined representation: ci<>0 for 0<=i<=m Ex:

23 Polynomial ADT: Interface
Abstract data type: Polyn_t represent the polynomial data type operations: Polyn_t Polyn_new (); // an empty polyn Polyn_t Polyn_add (Polyn_t p1, Polyn_t p2); real Polyn_value (Polyn_t p, real x0); // p(x0) Polyn_t Polyn_mult (Polyn_t p1, Polyn_t p2); // add an item c*x^n, which does not appear in p void Polyn_insert (Polyn_t p, real c, int n);

24 Polynomial ADT in C: Interface
// in file “polyn.h” #ifndef POLYN_H #define POLYN_H typedef struct Polyn_t * Polyn_t; Polyn_t Polyn_new (); Polyn_t Polyn_add (Polyn_t p1, Polyn_t p2); Polyn_t Polyn_value (Polyn_t p, real x0); Polyn_t Polyn_mult (Polyn_t p1, Polyn_t p2); void Polyn_insert (Polyn_t p, real c, int n); #endif

25 Polynomial ADT in C: Implementation
// in file “polyn.c” #include “linkedList.h” #include “polyn.h” struct Polyn_t { List_t coefExps; }; // where “coefExps” is a list of tuples: (c, n) // one way to read “list coefExps” is: // list<tuple<double, nat>> coefExps // However, C does not support this style of // declaration… :-(

26 Operation: “newPolyn”
Polyn_t Polyn_new () { Polyn_t p = malloc (sizeof (*p)); // use a linked list internally p->coefExps = List_new (); return p; }

27 Operation: “insert” void Polyn_insert (Polyn_t p, real c, nat n) {
// could we use “double” and “int”, instead of // “real” and “nat”? Tuple_t t = Tuple_new (c, n); List_insertAtTail (p->coefExps, t); return; } // Leave other functions as exercises.

28 Change to the Head #include <stdlib.h> #include “linkedList.h”
#include “tuple.h” #include “polyn.h” struct Polyn_t { List_t coefExps; };

29 Linear List Application#2: Dictionary
Dictionay: where ki are keys and vi are value all ki are comparable and distinct How can dict’ be represented in computers? many ideas (we’d discuss some in future) for now, we make use of a linear list

30 Dictionary ADT: Interface
Abstract data type: Dict_t represent the dictionary data type operations: Dict_t Dict_new (); void Dict_insert (Dict_t d, poly key, poly value); poly Dict_lookup (Dict_t d, poly key); poly Dict_delete (Dict_t d, poly key);

31 “dict” ADT in C: Interface
// in file “dict.h” #ifndef DICT_H #define DICT_H typedef struct Dict_t *Dict_t; Dict_t Dict_new (); void Dict_insert (Dict_t d, poly key, poly value); poly Dict_lookup (Dict_t d, poly key); poly Dict_delete (Dict_t d, poly key); #endif

32 “dict” ADT in C: Implementation
// in file “dict.c” #include “linkedList.h” #include “dict.h” struct Dict_t { List_t l; };

33 Operations: “new” Dict_t Dict_new () {
Dict_t d = malloc (sizeof (*d)); d->l = List_new (); return d; }

34 Operations: “insert” void Dict_insert (Dict_t d, poly key, poly value)
{ Tuple_t t = Tuple_new (key, value); List_insertAtHead (d->l, t); return; } // Leave other functions as programming // exercises.


Download ppt "C and Data Structures Baojian Hua"

Similar presentations


Ads by Google