Download presentation
Presentation is loading. Please wait.
1
Quasi-normal Modes Prefer Supersymmetry? Yi Ling ( 凌 意) ITP, Chinese Academy of Sciences Dec.26, 2003 Y. Ling and H. Zhang, gr-qc/0309018, Phys.Rev.D101501®
2
Quasi-normal Modes Prefer Supersymmetry? Statistical entropy of black holes from loop quantum gravity Quantum geometry of spacetime Counting the microstates of black holes Fixing the Immirzi parameter by quasinormal modes of black holes Asymptotical behavior of quasinormal mode spectrum Bohr’s correspondence principle Loop quantization of N=1 supergravity
3
Ashtekar-Sen Variables Ashtekar-Sen variables a: SU(2) index
4
Discreteness of Quantum Geometry Microscopic version of space
5
Spin Networks Spin networks j 1 j 2 j 3 v 1
6
Discreteness of Quantum Geometry Area spectrum A free parameter j Immirzi parameter
7
Statistical Entropy of Black Holes Bekenstein-Hawking entropy
8
The most probable distribution The area of discrete horizon Discrete Horizons From Quantum Geometry
9
Counting the Number of Microstates of Quantum Gravity The entropy of discrete horizon Statistical principle : for su(2)
10
Fixing the Immirzi Parameter Quasi-normal mode spectrum Compact system: normal modes Open system: quasi-normal modes
11
Fixing the Immirzi Parameter Quasinormal modes of Schwarzschild black holes
12
Fixing the Immirzi Parameter Asymptotical behavior of quasinormal modes Bohr’s correspondence principle
13
Fixing the Immirzi Parameter Quantum GR
14
Loop quantization of N=1 supergravity Area spectrum in N=1 supergravity
15
Loop quantization of N=1 supergravity Remarks
16
Loop quantization of N=1 supergravity
17
Thank You
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.