Download presentation
Presentation is loading. Please wait.
2
EE365 Adv. Digital Circuit Design Clarkson University Lecture #2 Boolean Laws and Methods
3
Boolean algebra a.k.a. “switching algebra” –deals with boolean values -- 0, 1 Positive-logic convention –analog voltages LOW, HIGH --> 0, 1 Signal values denoted by variables (X, Y, FRED, etc.) Rissacher EE365Lect #2
4
Boolean operators Complement:X (opposite of X) AND:X Y OR:X + Y binary operators, described functionally by truth table. Rissacher EE365Lect #2
5
More definitions Literal: a variable or its complement –X, X, FRED, CS_L Expression: literals combined by AND, OR, parentheses, complementation –X+Y –P Q R –A + B C –((FRED Z) + CS_L A B C + Q5) RESET Equation: Variable = expression –P = ((FRED Z) + CS_L A B C + Q5) RESET Rissacher EE365Lect #2
6
Logic symbols Rissacher EE365Lect #2
7
Theorems Rissacher EE365Lect #2
8
More Theorems Rissacher EE365Lect #2
9
Duality Swap 0 & 1, AND & OR –Result: Theorems still true –Note duals in previous 2 tables (e.g. T6 and T6’) –Example: Rissacher EE365Lect #2
10
N-variable Theorems Most important: DeMorgan theorems Rissacher EE365Lect #2
11
DeMorgan Symbol Equivalence Rissacher EE365Lect #2
12
Likewise for OR Rissacher EE365Lect #2
13
DeMorgan Symbols Rissacher EE365Lect #2
14
Even more definitions Product term –WX’Y Sum-of-products expression –(WX’Y)+(XZ)+(W’X’Y’) Sum term –A+B’+C Product-of-sums expression –(A+B’+C)(D’+A’)(D+B+C) Normal term –No variable appears more than once –(WX’Y)+(AZ)+(B’C’) Minterm (n variables) Maxterm (n variables) Rissacher EE365Lect #2
15
Minterm An n-variable minterm is a normal product term with n literals There are 2 n possibilities 3-variable example: X’Y’Z or Σ X,Y,Z (1) A minterm is a product term that is 1 in exactly one row of the truth table: Rissacher EE365Lect #2 XYZF 0000 0011 0100 0110 1000 1010 1100 1110 new notation
16
Maxterm An n-variable maxterm is a normal sum term with n literals There are 2 n possibilities 3-variable example: X’+Y’+Z or Л X,Y,Z (6) A maxterm is a sum term that is 0 in exactly one row of the truth table: Rissacher EE365Lect #2 XYZF 0001 0011 0101 0111 1001 1011 1100 1111 new notation
17
Truth table vs. minterms & maxterms Rissacher EE365Lect #2
18
Combinational analysis Rissacher EE365Lect #2
19
Signal expressions Multiply out: F = ((X + Y) Z) + (X Y Z) = (X Z) + (Y Z) + (X Y Z) Rissacher EE365Lect #2
20
New circuit, same function Rissacher EE365Lect #2 F = ((X + Y) Z) + (X Y Z) = (X Z) + (Y Z) + (X Y Z)
21
“Add out” logic function Circuit: Rissacher EE365Lect #2
22
Shortcut: Symbol substitution Rissacher EE365Lect #2
23
Different circuit, same function Rissacher EE365Lect #2
24
Practice Rissacher EE365Lect #2 Convert the following function into a POS: F = ((X + Z) Y) + (X’ Z’ Y’)
25
Convert the following function into a POS: F = ((X + Z) Y) + (X’ Z’ Y’) F = (X + Z + X’) (X + Z + Z’) (X + Z + Y’) (Y + X’) (Y + Z’) (Y + Y’) F = 1 1 (X + Z + Y’) (Y + X’) (Y + Z’) 1 F = (X + Z + Y’) (Y + X’) (Y + Z’) Practice Rissacher EE365Lect #2
26
Next Class Rissacher EE365Lect #2 Building Combination Circuits Minimization Karnaugh Maps
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.