Download presentation
Presentation is loading. Please wait.
1
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April 20, 2006
2
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Safety First and Second and Third…..to Infinity Hazards in the LLRF system RF 1kW at 120Hz at 5uS = 0.6 Watts average, 2 Watt average amps at 2856MHz, 60W average amps at 476MHz Hazards – RF Burns Mitigation – Avoid contact with center conductor of energized connectors. All employees working with LLRF systems are required to have the proper training. 110VAC Connector Hazards - Shock Mitigation - Don’t touch conductors when plugging into outlet. All chassis are inspected by UL trained inspector.
3
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Scope of Work – Injector Turn-on Linac Sector 0 RF Upgrade WBS 1.02.04.03.01 All 3 RF Chassis completed and Installed Control Module ready for test – John Dusatko Sector 20 RF distribution system WBS 1.02.04.03.02 Phase and Amplitude Controllers (PAC) – 6 units in Design Phase and Amplitude Detectors (PAD) – 1 unit in Design Phased Locked Oscillator – Use SPPS unit for Turn On LO Generator – Design 90% Complete and tested Multiplier – 476MHz to 2856MHz – Complete 4 distribution chassis - Complete Laser Phase Measurement – in Design – not required for turn on LLRF Control and Monitor System WBS 1.02.04.03.03 1 kW Solid State S-Band Amplifiers – 5 units – in Fab, 2 done PAD – 12 units as above in design PAC – 6 units as above in design Bunch Length Monitor Interface – awaiting Specs Beam Phase Cavity WBS 1.02.04.03.04 Will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners - Complete next month
4
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LCLS Layout P. Emma
5
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LLRF Control system spans Sector 20 off axis injector to beyond Sector 30
6
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LCLS RF Jitter Tolerance Budget RMS tolerance budget for <12% rms peak-current jitter or <0.1% rms final e− energy jitter. All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac. P. Emma Lowest Noise Floor Requirement 0.5deg X-Band = 125fS Structure Fill time = 100nS Noise floor = -111dBc/Hz @ 11GHz 10MHz BW -134dBc/Hz @ 476MHz X-band X-X-X-X- 0.50
7
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Slow Drift Tolerance Limits Gun-Laser Timing 2.4* deg-S Bunch Charge 3.2 % Gun RF Phase 2.3 deg-S Gun Relative Voltage 0.6 % L0,1,X,2,3 RF Phase (approx.) 5555deg-S L0,1,X,2,3 RF Voltage (approx.) 5555% (Top 4 rows for / < 5%, bottom 4 limited by feedback dynamic range) * for synchronization, this tolerance might be set to 1 ps (without arrival-time measurement) (Tolerances are peak values, not rms) P. Emma, J, Wu
8
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Linac Sector 0 RF Upgrade PEP PHASE SHIFT ON MAIN DRIVE LINEMDL RF with TIMING Pulse – Sync to DR Master Oscillator is located 1.3 miles from LCLS Injector 1.3 Miles to LCLS Injector LCLS must be compatible with the existing linac operation including PEP timing shifts Measurements on January 20, 2006 at Sector 21 show 30fS rms jitter in a bandwidth from 10Hz to 10MHz
9
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Linac Sector 0 RF Upgrade Status New Low Noise Master Oscillator – Done New Low Noise PEP Phase Shifter RF Chassis – Done Control Chassis – In Test New Low Noise Master Amplifier – Done Main Drive Line Coupler in Sector 21 – Done Measurements Noise floor on 476MHz of -156dBc/Hz Integrated jitter from 10Hz to 10MHz of 30fS
10
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Sector 20 RF Distribution Phase Critical Cables Laser <140ft < 700fSpp Gun < 100ft < 400fSpp
11
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Sector 20 RF Distribution System Status Phase Locked Oscillator – 476MHz Initial Turn On use SPPS Oscillator May modify control to achieve better stability during 2007 LO Generator – 2830.5MHz Design complete – Prototype tested – 25MHz SSB modulator board done 2856MHz IQ Modulator prototype near completion Multipliers - 476MHz to 2856MHz – Done Phase and Amplitude Control (PAC) Unit In Design – IQ Modulators and Amplifiers selected – See Next Section Phase and Amplitude Detector (PAD) Unit In Design – Testing Mixers, Amplifiers, Filters – See Next Section Amplifiers – not ordered yet Laser Phase Measurement System – Design Started
12
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LLRF Control System Distributed Control System Microcontroller based IOC Control and Detector Modules Ethernet Switch Central Feedback Computer
13
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LLRF Control and Monitor System Klystron Station
14
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LLRF Control and Monitor System Status 1 kW Solid State S-Band Amplifiers – 5 units 1kW amplifier modules currently in test Existing amplifier support design under review Phase and Amplitude Detectors – 11 dual chan units Preliminary Design Complete Evaluating amplifiers, mixers, and filters Phase and Amplitude Controllers – 6 single chan units Preliminary design complete Evaluating mixers and amplifiers Bunch Length Monitor Interface Need Specifications
15
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Beam Phase Cavity Status Electronics will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners Cavity Electronics will use single channel of RF Monitor Cavity in fabrication Complete – May 2006 Bake – June 2006 Measurement of beam phase to RF reference phase. The result will be used to correct timing of laser to RF reference. Cavity is located between L0A and L0B.
16
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Controls Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for T- cavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OSStudy of open source real-time OS Begin RF processing of high-powered structures June 2006
17
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for diagnostics
18
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Sector 20 PAC and PAD Control VME IOC Ethernet Switch Arcturus Coldfire 13 PADs FIFO ADC 13 PACs FPGA DAC
19
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 EPICS PANELS Single Pulse Diagnostic Panels for PADs are Running Remaining Software History Buffer Select PVs Multi pulse data analysis, correlation plots Local RF Feedback loops Links to global Feedback loops
20
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 RF Status Summary Linac New Low Noise Source – RF components installed, Controls Feb06 RF Distribution – Prototyping underway (R. Akre, B.Hong, H. Schwarz) Monitor Controller Board (J. Gold, R. Akre, Till Straumann) Single channel prototype for ADS5500 tested to specifications Four channel ADS5500 board – layout complete (SNR 70dBFS) Switched to LTC2208 16bit 130MSPS ADC (Prototype in test) (SNR 77dBFS) RF Monitor Board in preliminary design (H. Schwarz, B.Hong) Testing mixers Control Boards (J. Olsen) Fast Control Board – All but slow ADCs for temp and voltages tested and low level drivers written Slow control board – use fast board RF Control Board in preliminary design (H. Schwarz, B. Hong) Software (D. Kotturi, Till Straumann) EPICS on RTEMS on Microcontroller done Drivers – data collection interrupt routine done Algorithms – PAD 90% complete PAC in progress Calibration routines – Need specifications Collision free Ethernet
21
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LLRF Schedule RF Distribution Design Complete May 2006 RF Hut Distribution System installed August 2006 PAC design Complete June 2006 PAD design Complete July 2006 PAC and PAD minimal operational software complete Ethernet testing with multiple PACs and PADs??? Single S-Band station – hardware installed Sept 2006 4 other S-Band Stations – November 2006 Feedback software interfacing??? Test and debug with Klystrons On – December 2006 X-Band Station January 2007
22
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 End of LLRF RF Talk Backup for RF Talk Mostly Correct
23
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 DESIGN PHILOSOPHY Reliability is inversely proportional to the number of connectors. Stability is inversely proportional to the number of connectors. Measurement accuracy is inversely proportional to the number of connectors and the amount of Teflon,which is typically found in connectors. Cost of maintenance is proportional to the number of connectors.
24
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Electro-Optical Sampling 170 fs rms Single-Shot Timing Jitter (20 Shots) 200 m thick ZnTe crystal eeee Ti:Sapphire laser Adrian Cavalieri et al., U. Mich. <300 fs e temporal information is encoded on transverse profile of laser beam
25
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 MPS – PPS Issues Addressed by Controls Group Not Reviewed Here Vacuum New vacuum system summary to be fed to each klystron existing MKSU. PPS System Injector modulators will be interlocked by Injector PPS system. PPS requirements for radiation from the injector transverse accelerator needs to be determined. Radiation levels will be measured during testing in the Klystron Test Lab – Feb 06.
26
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Bandwidth of S-Band System Upper Frequency Limit – 10MHz Beam-RF interaction BW due to structure fill time < 1.5MHz S-Band Accelerators and Gun ~10MHz X-Band and S-Band T Cav Structure RF Bandwidth ~ 16MHz 5045 Klystron ~ 10MHz Lower Frequency Limit – 10kHz Fill time of SLED Cavity = 3.5uS about 100kHz Laser – Needs to be measured ~ 10kHz
27
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Noise Levels RF Reference Single Side Band (SSB) Noise Floor 2856MHz RF Distribution -144dBc/Hz -174dBc/Hz @ 119MHz (24x = +28dB +2 for multiplier) 2830.5MHz Local Oscillator -138dBc/Hz Integrated Noise -138dBc/Hz at 10MHz = -65dBc = 32fS rms SNR = 65dB for phase noise Added noise from MIXER (LO noise same as RF) SNR of 62dB ADC noise levels SNR of 70dB – 14bit ADS5500 at 102MSPS
28
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Phase Noise – Linac Sector 0 OLD MASTER OSCILLATOR -133dBc/Hz at 476MHz 340fSrms jitter in 10MHz BW NEW MASTER OSCILLATOR -153dBc/Hz at 476 MHz 34fSrms jitter in 10MHz BW Integrated Noise - Timing Jitter fs rms Integral end 5MHz10kHz Integral start 1M100k10k1k10010 Aug 17, 2004 Sector 30 273033387582 Jan 20, 2006 Sector 2115192020817
29
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Sector 20 RF Distribution Cable Errors Temperature Coefficient of 2.8ppm/ºF and Cable length is 1200ºS/ft All Cables except LASER are less than 100ft Distances feet and errors in degrees S total range RF Hut Down Linac Wall Injector Total Unit Ft degS ft degS ft degS ft degS ft degS DegS Laser 8 0.054 25 0.017 10 0.014 10 0.007 85 0.58 0.68 Gun 8 0.054 25 0.017 10 0.014 10 0.007 40 0.27 0.37 L0-A 8 0.054 25 0.017 10 0.014 10 0.007 30 0.21 0.31 B Phas 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-B 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-T 8 0.054 25 0.017 10 0.014 10 0.007 10 0.07 0.17 L1-S 8 0.054 25 0.017 50 0.068 0.14 L1-X 8 0.054 25 0.017 60 0.081 0.16 Temperature Variations: RF Hut ±1ºF : Penetration ±0.1ºF : Linac : ±0.2ºF Shield Wall ±0.1ºF : Injector ±1ºF
30
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 RF System Topology / Specifications
31
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 RF Monitor Signal Counts ADC Chan CntChassis Count/Location Distribution (5~2850MHz, 4<500MHz) 4 1Hut RF Gun9 1Kly1.5Hut Beam Phase Cavity2 0.5Hut L0-AAccelerator4 1Kly0.5Hut L0-B Accelerator4 1Kly0.5Hut L0-T Transverse Accelerator41Kly0.5Hut L1-S Station 21-1 B, C, and D Acc6 1Kly1.0Hut L1-X X-Band accelerator X-Band51Kly0.5Hut S25-Tcav41Kly S24-1, 2, & 3 Feedback0 S29 and S30 Feedback0 Total Chassis7Kly6Hut Total into Hut IOC12
32
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 RF Control Signal Counts Distribution(3~2850MHz, 3<500MHz) 6 IQ Mod RF Gun1 Klystron Beam Phase Cavity1 IQ mod L0-AAccelerator1 Klystron L0-B Accelerator1 Klystron L0-T Transverse Accelerator1 Klystron L1-S Station 21-1 B, C, and D accelerators1 Klystron L1-X X-Band accelerator X-Band1 IQ Mod S25-Tcav1 Klystron S24-1, 2, & 3 Feedback3 Klystrons S29 and S30 Feedback2 IQ modulators 476MHz Total modulators11 Fast 8 Slow 19 modulators Totals at ~2856MHz14 modulators Total into Hut IOC14 modulators
33
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LLRF Control and Monitor System 1 kW Solid State S-Band Amplifiers – 5 units Phase and Amplitude Monitors – 12 units Phase and Amplitude Controllers – 6 units Bunch Length Monitor Interface – Need Specifications
34
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 RF Control RF Control Module consist of the following: Input Coupler, IQ Modulator, Amplifier, Output Coupler Filters for I and Q inputs Required 13 Units Includes Distribution
35
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 RF Monitor Required 13 Chassis for Injector – Includes Distribution LO 2830.5MHz : RF 2856MHz IF 25.5MHz (8.5MHz x 3 in sync with timing fiducial) Double-Balanced Mixer Mixer IF to Amp and then Low Pass Filter Filter output to ADC sampling at 102MSPS 2830.5MHz Local Osc. 2856MHz RF Signal To ADC LTC2208 SNR = 77dBFS 102MSPS
36
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 1 kW Solid State S-Band Amplifiers Design Complete Two Units on the Shelf Modules in house – and tested Support parts – Some parts in house Power Supplies, relays, chassis on order
37
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 SLAC Linac RF – New Control The new control system will tie in to the IPA Chassis with 1kW of drive power available. Reference will be from the existing phase reference line or the injector new RF reference I and Q will be controlled with a 16bit DAC running at 119MHz. Waveforms to the DAC will be set in an FPGA through a microcontroller running EPICS on RTEMS. Existing System
38
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Controls Talk
39
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 LLRF Controls Outline Requirements External Interfaces Schedule Date Needed Prototype Completion Date Hardware Order Date Installation Test Period Design Design Maturity (what reviews have been had) State of Wiring Information State of Prototype
40
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Requirements At 120 Hz, meet phase/amp noise levels defined as: 0.1% rms amplitude 100 fs rms in S-band (fill time = 850 ns) 125 fs rms in X-band (fill time = 100 ns) All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac (L2 has 28; L3 has 48)
41
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for T- cavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OSStudy of open source real-time OS Begin RF processing of high-powered structures May 20, 2006
42
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for debug
43
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 External Interfaces: Laser - Tcav
44
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 External Interfaces: L2-L3
45
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Design Design maturity (what reviews have been had): RF/Timing DesignRF/Timing Design, DOE Review, August 11, 2004 Akre_FAC_Oct04_RF_TimingAkre_FAC_Oct04_RF_Timing, FAC Review, October, 2004 Low Level RF Controls DesignLow Level RF Controls Design, LCLS Week, January 25-27, 2005 Low Level RFLow Level RF, Lehman Review, May 10-12, 2005 LLRF Plans for Development and Testing of ControlsLLRF Plans for Development and Testing of Controls, LCLS Week, July 21, 2005 Low Level RF DesignLow Level RF Design, Presentation for Controls Group, Sept. 13, 2005 LLRF Preliminary Design reviewLLRF Preliminary Design review, SLAC, September 26, 2005 LCLS LLRF Control System - KotturiLCLS LLRF Control System - Kotturi, LLRF Workshop, CERN, October 10-13, 2005 LCLS LLRF System - HongLCLS LLRF System - Hong, LLRF Workshop, CERN, October 10-13, 2005 LLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/AkreLLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/Akre, LCLS Week, SLAC, October 24-26, 2005 LCLS Week LLRF and feedback - Kotturi/AllisonLCLS Week LLRF and feedback - Kotturi/Allison, LCLS Week, SLAC, October 24-26, 2005 LLRFLLRF, LCLS System Concept Review/Preliminary Design Review, SLAC, November 16-17, 2005 CommentsComments LLRF Beam Phase Cavity Preliminary Design reviewLLRF Beam Phase Cavity Preliminary Design review, SLAC, November 30, 2005 Docs at: http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/llrf State of wiring: percent complete Captar input will be given at time of presentation State of prototype: PAD (1 chan ADC) and PAC boards built (shown on next pages).Testing.
46
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 PAD – the monitor board
47
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 PAD – the monitor board
48
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 PAC – the control board
49
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 PAC – the control board
50
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Additional Slides The following two pages show an overview of the LLRF control modules. From these diagrams, counts of module types, as well as function and location are seen.
51
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Overview of LLRF at Sector 20
52
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Overview of LLRF at Sector 24
53
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Beam Phase Monitor R. Akre A. Haase B. Hong D. Kotturi V. Pacak H. Schwarz Preliminary Design Review November 30, 2005
54
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Outline Purpose Specifications System outline Cavity Noise Levels Analysis Long Term Drifts Summary
55
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Laser Timing Stabilization Feedback Beam timing information from the beam phase monitor will be used to apply corrections to the timing of the laser on the RF Gun.
56
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Specifications Short term (2 second) timing jitter: 100fS rms Long term (4 day) timing jitter: ±1pS Range of the above accuracies is ±10pS Data available at 120Hz
57
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 System Outline
58
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Cavity Frequency = 2856MHz Q = 6000 Time Constant = 700nS Temperature Coefficient = 50kH/°C
59
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 System Critical Noise Levels and Bandwidths Cavity Signal – Bandwidth 500kHz Local Oscillator – Noise Floor –143dBc/Hz IF Filter – Bandwidth 4MHz ADC – SNR at input 76dB
60
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 System Critical Noise Levels and Bandwidths
61
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 ADC Linear Technologies LTC2208 16Bit 130MHz SNR 77.6dBFS 30MHz in Clock 130MHz SFDR 95dB
62
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Analysis Phase Calculated Beam Phase at Beam Time Measured Data Point 1 Measured Data Point 2 Time
63
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 I & Q from Waveform Digital Down Mixing and Normalization Digitized Input Signal
64
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Optimization Optimal Points to use for analysis is 16 point average at points 18 and 120
65
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Analysis Results Standard deviation of result = 1.1e-4 or 6.3fS rms jitter Signal level 20dB lower will give 63fS rms jitter Sensitivity to frequency change = 0.6fS/2.8kH freq change Sensitivity to timing change over +-10deg = 1:1
66
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 80ft (1M deg) of ½ inch superflex has TC of 4ppm/degC Water temp tolerance is +-0.1degF = +-400fS drift Long Term Drifts
67
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Summary Short term (2 second) timing jitter: 100fS rms 63fS rms Long term (4 day) timing jitter: ±1pS ±0.8pS Range of the above accuracies is ±10pS Results Data available at 120Hz Simple algorithm in integer arithmetic will allow this
68
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Feedback Page 1 LOCAL FEEDBACK
69
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Feedback Page 2 LOCAL FEEDBACK GLOBAL FEEDBACK
70
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Feedback Page 3 LOCAL FEEDBACK GLOBAL FEEDBACK
71
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Feedback Page 4 GLOBAL FEEDBACK
72
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Feedback Page 5 GLOBAL FEEDBACK
73
Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu April 20, 2006 Feedback Page 6
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.