Presentation is loading. Please wait.

Presentation is loading. Please wait.

Shuffle Exchange Network and de Bruijn’s Graph Shuffle Exchange graph 000 001 010011 100101 110111 00 01 10 11 Merge exchange into a single node De Bruijn.

Similar presentations


Presentation on theme: "Shuffle Exchange Network and de Bruijn’s Graph Shuffle Exchange graph 000 001 010011 100101 110111 00 01 10 11 Merge exchange into a single node De Bruijn."— Presentation transcript:

1 Shuffle Exchange Network and de Bruijn’s Graph Shuffle Exchange graph 000 001 010011 100101 110111 00 01 10 11 Merge exchange into a single node De Bruijn Graph (label: shift left and add the label) 0 00 1 0 1 1 1

2 00 01 10 11 1 0 1 0 0 11 0 Same Graph, Another labeling on edges node x 1 x 0  x 0 (x 1  label)

3  f 001011 100110 000101010111 1 0 1 1 1 1 1 1 1 0 0 0 0 0 f is either 0 or 1 For 0: shift 1: complement Note that each complete cycle of shift register corresponds to a HC of de Bruijns Graph

4 001 000 00. 

5  0 0 1 Shift Register 001011 100110 000101010111 001 011 111 110 101 010 100 001 => DeBruijn sequence 001 010 101 011 111 110 100 001 0 01  011 100110 000101010111 x 3 + x + 1 is irreducible x 3 + x 2 + 1 is irreducible

6  0 0 1 Shift Register 001011 100110 000101010111 001 011 110 100 => degenerated cycle x 3 + x 2 + x + 1 ? = (x 2 +1)(x+1) not irreducible 

7  For 4 bit 0001 0011 0111 1111 1110 1101 1010 0101 1011 0110 1100 1001 0010 0100 1000

8 Cycle decomposition based n  001011 100110 011 011  101  010

9 000 1 0 0 0 01 1 1 Conventional labeling 00 1 1 1 1 0 0 0 0

10 001011 100110 000101010111


Download ppt "Shuffle Exchange Network and de Bruijn’s Graph Shuffle Exchange graph 000 001 010011 100101 110111 00 01 10 11 Merge exchange into a single node De Bruijn."

Similar presentations


Ads by Google