Download presentation
Presentation is loading. Please wait.
1
Shuffle Exchange Network and de Bruijn’s Graph Shuffle Exchange graph 000 001 010011 100101 110111 00 01 10 11 Merge exchange into a single node De Bruijn Graph (label: shift left and add the label) 0 00 1 0 1 1 1
2
00 01 10 11 1 0 1 0 0 11 0 Same Graph, Another labeling on edges node x 1 x 0 x 0 (x 1 label)
3
f 001011 100110 000101010111 1 0 1 1 1 1 1 1 1 0 0 0 0 0 f is either 0 or 1 For 0: shift 1: complement Note that each complete cycle of shift register corresponds to a HC of de Bruijns Graph
4
001 000 00.
5
0 0 1 Shift Register 001011 100110 000101010111 001 011 111 110 101 010 100 001 => DeBruijn sequence 001 010 101 011 111 110 100 001 0 01 011 100110 000101010111 x 3 + x + 1 is irreducible x 3 + x 2 + 1 is irreducible
6
0 0 1 Shift Register 001011 100110 000101010111 001 011 110 100 => degenerated cycle x 3 + x 2 + x + 1 ? = (x 2 +1)(x+1) not irreducible
7
For 4 bit 0001 0011 0111 1111 1110 1101 1010 0101 1011 0110 1100 1001 0010 0100 1000
8
Cycle decomposition based n 001011 100110 011 011 101 010
9
000 1 0 0 0 01 1 1 Conventional labeling 00 1 1 1 1 0 0 0 0
10
001011 100110 000101010111
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.