Download presentation
Presentation is loading. Please wait.
1
CSci 6971: Image Registration Lecture 9: Registration Components February 10, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware
2
Image RegistrationLecture 9 2 Registration Components Basic Registration Framework
3
Image RegistrationLecture 9 3 Image Registration Framework Fixed Image Moving Image Metric Transform Interpolator Optimizer Parameters
4
Image RegistrationLecture 9 4 Other Image Metrics Mean Reciprocal Square Differences
5
Image RegistrationLecture 9 5 Mean Reciprocal Squared Differences Image A Image B For each pixel in A Difference( index ) = A( index ) – B( index ) 1 Match( A, B ) += ( 1 + λ ∙ Difference( index ) 2 )
6
Image RegistrationLecture 9 6 For each pixel in the Fixed Image Fixed Image Grid j i y x Fixed Image Physical Coordinates y’ x’ Moving Image Physical Coordinates Moving Image Grid j i Space Transform
7
Image RegistrationLecture 9 7 Mean Reciprocal Squared Differences #include "itkImage.h" #include "itkMeanReciprocalSquareDifferenceImageToImageMetric.h" #include "itkLinearInterpolateImageFunction.h" #include "itkTranslationTransform.h" typedef itk::Image ImageType; ImageType::ConstPointer fixedImage = GetFixedImage(); ImageType::ConstPointer movingImage = GetMovingImage(); typedef itk::LinearInterpolateImageFunction InterpolatorType; InterpolatorType::Pointer interpolator = InterpolatorType::New(); typedef itk::TranslationTransform TransformType; TransformType::Pointer transform = TransformType::New();
8
Image RegistrationLecture 9 8 typedef itk::MeanReciprocalSquareDifferenceImageToImageMetric MetricType; MetricType::Pointer metric = MetricType::New(); metric->SetInterpolator( interpolator ); metric->SetTransform( transform ); metric->SetFixedImage( fixedImage ); metric->SetMovingImage( movingImage ); MetricType::TransformParametersType translation( Dimension ); translation[0] = 12; translation[1] = 27; double value = metric->GetValue( translation ); Mean Reciprocal Squared Differences
9
Image RegistrationLecture 9 9 Evaluating many matches y Fixed Image Transform x y Moving Image x
10
Image RegistrationLecture 9 10 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space
11
Image RegistrationLecture 9 11 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space
12
Image RegistrationLecture 9 12 Evaluating many matches y Fixed Image Transform x y Moving Image x (-15,-25) mm
13
Image RegistrationLecture 9 13 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space
14
Image RegistrationLecture 9 14 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space
15
Image RegistrationLecture 9 15 Watch over your optimizer Example: Optimizer registering an image with itself starting at (-15mm, -25mm)
16
Image RegistrationLecture 9 16 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 1.0 mm
17
Image RegistrationLecture 9 17 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 2.0 mm
18
Image RegistrationLecture 9 18 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 5.0 mm
19
Image RegistrationLecture 9 19 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 10.0 mm
20
Image RegistrationLecture 9 20 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 20.0 mm
21
Image RegistrationLecture 9 21 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 40.0 mm
22
Image RegistrationLecture 9 22 Quiz #1 If the Metric is Noisy Where is the noise coming from ?
23
Image RegistrationLecture 9 23 Smoothing the Image
24
Image RegistrationLecture 9 24 Evaluating many matches y Fixed Image Transform x y Moving Image x
25
Image RegistrationLecture 9 25 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space
26
Image RegistrationLecture 9 26 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space
27
Image RegistrationLecture 9 27 Watch over your optimizer Example: Optimizer registering an image with itself starting at (-15mm, -25mm)
28
Image RegistrationLecture 9 28 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 1.0 mm
29
Image RegistrationLecture 9 29 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 2.0 mm
30
Image RegistrationLecture 9 30 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 5.0 mm
31
Image RegistrationLecture 9 31 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 10.0 mm
32
Image RegistrationLecture 9 32 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 20.0 mm
33
Image RegistrationLecture 9 33 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 40.0 mm
34
Image RegistrationLecture 9 34 Evaluating many matches y Fixed Image Transform x y Moving Image x (-15,-25) mm
35
Image RegistrationLecture 9 35 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space
36
Image RegistrationLecture 9 36 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space
37
Image RegistrationLecture 9 37 Watch over your optimizer Example: Optimizer registering an image shifted by (-15mm, -25mm) The optimizer starts at (0mm,0mm)
38
Image RegistrationLecture 9 38 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 1.0 mm
39
Image RegistrationLecture 9 39 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 2.0 mm
40
Image RegistrationLecture 9 40 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 5.0 mm
41
Image RegistrationLecture 9 41 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 10.0 mm
42
Image RegistrationLecture 9 42 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 20.0 mm
43
Image RegistrationLecture 9 43 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 40.0 mm
44
Image RegistrationLecture 9 44 Other Image Metrics Multi – Modality Registration
45
Image RegistrationLecture 9 45 Multiple Image Modalities Number of pairs
46
Image RegistrationLecture 9 46 Multiple Image Modalities More possible pairs
47
Image RegistrationLecture 9 47 Intuitive Notion of Joint Entropy The More Pairs Exist The Larger the Joint Entropy
48
Image RegistrationLecture 9 48 Mutual Information Reduction of Number of Pairs Reduction of Joint Entropy
49
Image RegistrationLecture 9 49 Mutual Information Mutual Information = Joint Entropy ( Image A, Image B ) - Entropy Image A - Entropy Image B
50
Image RegistrationLecture 9 50 Mattes Mutual Information #include "itkImage.h" #include "itkMattesMutualInformationImageToImageMetric.h" #include "itkLinearInterpolateImageFunction.h" #include "itkTranslationTransform.h" typedef itk::Image ImageType; ImageType::ConstPointer fixedImage = GetFixedImage(); ImageType::ConstPointer movingImage = GetMovingImage(); typedef itk::LinearInterpolateImageFunction InterpolatorType; InterpolatorType::Pointer interpolator = InterpolatorType::New(); typedef itk::TranslationTransform TransformType; TransformType::Pointer transform = TransformType::New();
51
Image RegistrationLecture 9 51 typedef itk::MattesMutualInformationImageToImageMetric MetricType; MetricType::Pointer metric = MetricType::New(); metric->SetNumberOfHistogramBins( 20 ); metric->SetNumberOfSpatialSamples( 10000 ); metric->SetInterpolator( interpolator ); metric->SetTransform( transform ); metric->SetFixedImage( fixedImage ); metric->SetMovingImage( movingImage ); MetricType::TransformParametersType translation( Dimension ); translation[0] = 12; translation[1] = 27; double value = metric->GetValue( translation ); Mattes Mutual Information
52
Image RegistrationLecture 9 52 Evaluating many matches y Fixed Image Transform x y Moving Image x
53
Image RegistrationLecture 9 53 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space
54
Image RegistrationLecture 9 54 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space
55
Image RegistrationLecture 9 55 Evaluating many matches y Fixed Image Transform x y Moving Image x (-15,-25) mm
56
Image RegistrationLecture 9 56 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space
57
Image RegistrationLecture 9 57 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space
58
Image RegistrationLecture 9 58 Evaluating many matches y Fixed Image Transform x y Moving Image x
59
Image RegistrationLecture 9 59 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space
60
Image RegistrationLecture 9 60 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space
61
Image RegistrationLecture 9 61 Evaluating many matches y Fixed Image Transform x y Moving Image x
62
Image RegistrationLecture 9 62 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space
63
Image RegistrationLecture 9 63 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space
64
Image RegistrationLecture 9 64 Watch over your optimizer Example: Optimizer registering two aligned multi-modality images starting at (-15mm, -25mm)
65
Image RegistrationLecture 9 65 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 1.0 mm
66
Image RegistrationLecture 9 66 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 2.0 mm
67
Image RegistrationLecture 9 67 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 5.0 mm
68
Image RegistrationLecture 9 68 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 10.0 mm
69
Image RegistrationLecture 9 69 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 20.0 mm
70
Image RegistrationLecture 9 70 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 40.0 mm
71
Image RegistrationLecture 9 71 Watch over your optimizer Example: Optimizer registering two multi-modality images shifted by (-15mm, -25mm) The optimizer starts at (0mm,0mm)
72
Image RegistrationLecture 9 72 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 1.0 mm
73
Image RegistrationLecture 9 73 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 2.0 mm
74
Image RegistrationLecture 9 74 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 5.0 mm
75
Image RegistrationLecture 9 75 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 10.0 mm
76
Image RegistrationLecture 9 76 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 20.0 mm
77
Image RegistrationLecture 9 77 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 40.0 mm
78
Image RegistrationLecture 9 78 Mutual Information Variants in ITK Viola – Wells Mattes Mutual Information Histogram
79
Image RegistrationLecture 9 79 End Enjoy ITK !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.