Download presentation
Presentation is loading. Please wait.
1
Viterbi Algorithm
2
Computing Probabilities viterbi [ s, t ] = max(s’) ( viterbi [ s’, t-1] * transition probability P(s | s’) * emission probability P (token[t] | s) ) for each s, t: record which s’, t-1 contributed the maximum
3
Analyzing Fish sleep.
4
A Simple POS HMM startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1
5
Word Emission Probabilities P ( word | state ) A two-word language: “fish” and “sleep” Noun –fish: 0.8 –sleep: 0.2 Verb –fish: 0.4 –sleep: 0.6
6
Viterbi Probabilities
7
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1
8
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 1: fish
9
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 1: fish
10
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 2: sleep (if ‘fish’ is verb)
11
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 2: sleep (if ‘fish’ is verb)
12
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 2: sleep (if ‘fish’ is a noun)
13
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 2: sleep (if ‘fish’ is a noun)
14
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 2: sleep take maximum, set back pointers
15
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 2: sleep take maximum, set back pointers
16
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 3: end
17
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Token 3: end take maximum, set back pointers
18
startnounverb end 0.8 0.2 0.8 0.7 0.1 0.2 0.1 Decode: fish = noun sleep = verb
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.