Download presentation
Presentation is loading. Please wait.
1
sin2 1 /sin2 via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
2
Introduction _ d b _ c c s d _ w B0B0 J/ K0K0 d b _ _ s s s d _ gt B0B0 K0K0 , ’... w Extra CPV phase from New Physics Time-Dependent CP asymmetry in B 0 decays
3
SM Contamination +1KsKsKs 11 Ks P’ T P T’ Ks Ks f 0 Ks Ks ~+1 K + K Ks CP mode T’P 2 P’ 2 T 4 4 Tree (V ub ) contamination Long distance effect Need to know the size to claim NP u-quark penguin ~V ub * V us Positive sin2 1
4
Three theoretically-clean modes Theoretical estimates of sin2 1 / Short distance effect QCDF: Beneke, PLB 620, 143 (2005) Cheng, Chua, Yang, PRD 73, 014017 (2006) pQCD: Mishima, Sanda, PRD 72, 114005 (2005) SCET: Williamson, Zupan, PRD 74, 014003 (2006) Long distance effect (is small) Cheng, Chua, Soni, PRD 72, 014006 (2005) sin2 1 / QCDF Reviewed in hep-ph/0605301 (talk by Chua in FPCP06) Lazzaro’s talk at ICHEP06
5
Status before summer
6
BelleBaBar K0K0 K K K S K S K L K S Time-dependent Dalitz analysis K + K K S K + K K S 00 K + K K L K K K S K K K L f0K0f0K0 f 0 K S KKK0KKK0 K K excl. K S ’K0’K0 ’( K S ’( K S ’( 3 K S ’( K S ’( K S ’( 3 K S ’( K L ’( K L ’( 3 K L 3K S K S K S K S K S K S K S KS0KS0 K S KSKS K S Reconstruction modes K S K S K S K S
7
BelleBaBar K0K0 K K K S K S K L K S Time-dependent Dalitz analysis K + K K S K + K K S 00 K + K K L K K K S K K K L f0K0f0K0 f 0 K S KKK0KKK0 K K excl. K S ’K0’K0 ’( K S ’( K S ’( 3 K S ’( K S ’( K S ’( 3 K S ’( K L ’( K L ’( 3 K L 3K S K S K S K S K S K S K S KS0KS0 K S KSKS K S Reconstruction modes K S K S K S K S
8
1516 65 K K K 0 signal 1516 65 K K K 0 signal Obtain CP parameters for 2-body and 3-body modes simultaneously hep-ex/0607112 B K K K 0 Time-dependent Dalitz K + K K S K + K K S 00 K + K K L Intermediate resonances ( (1020)K 0, f 0 (980)K 0, X 0 (1550)K 0, c0 K 0, D K , D s K ) and NR
9
K 0 : sin2 eff = +0.12 0.31(stat) 0.10 (syst) measurement (not sin2 ) exclude at 4.6 Fit to low K K mass region (<1.1GeV) First in f 0 K K hep-ex/0607112 Cf. BaBar 2005
10
B0 K0B0 K0 B 0 mass B 0 momentum (bkg subtracted) K K , K S K K , K S K S K L, K S 114 17 K L signal 114 17 K L signal 246 18 40 9 22 7 307 21 K S signal 246 18 40 9 22 7 307 21 K S signal New mode hep-ex/0608039 KKKK
11
TCPV in B 0 K 0 “sin2 1 ” = 0.50 0.21(stat) 0.06(syst) A = 0.07 0.15(stat) 0.05(syst) “sin2 1 ” = 0.50 0.21(stat) 0.06(syst) A = 0.07 0.15(stat) 0.05(syst) K S and K L combined background subtracted good tags t – t for K L t distribution and asymmetry Consistent with the SM (~1 lower) Consistent with Belle 2005 (Belle2005: “sin2 1 ” = +0.44 Consistent with the SM (~1 lower) Consistent with Belle 2005 (Belle2005: “sin2 1 ” = +0.44 unbinned fit SM hep-ex/0608039
12
TCPV in B 0 f 0 K S “sin2 1 ” = 0.23(stat) 0.11(syst) A = 0.15(stat) 0.07(syst) “sin2 1 ” = 0.23(stat) 0.11(syst) A = 0.15(stat) 0.07(syst) 377 25 f 0 K S signal Raw symmetry B 0 mass good tags mass hep-ex/0609006 f0f0
13
TCPV in B 0 K K K S 840 34 K S signal 840 34 K S signal Raw symmetry B 0 mass good tags “sin2 1 ” = 0.15(stat) 0.03(syst) (CP-even) A = 0.10(stat) 0.05(syst) “sin2 1 ” = 0.15(stat) 0.03(syst) (CP-even) A = 0.10(stat) 0.05(syst) +0.21 0.13 hep-ex/0609006 mixture of CP even and odd states (2005)
14
BelleBaBar K0K0 K K K S K S K L K S Time-dependent Dalitz analysis K + K K S K + K K S 00 K + K K L K K K S K K K L f0K0f0K0 f 0 K S KKK0KKK0 K K excl. K S ’K0’K0 ’( K S ’( K S ’( 3 K S ’( K S ’( K S ’( 3 K S ’( K L ’( K L ’( 3 K L 3K S K S K S K S K S K S K S KS0KS0 K S KSKS K S Reconstruction modes K S K S K S K S
15
B0 'K0B0 'K0 (bkg subtracted) B 0 mass B 0 momentum hep-ex/0608039 ’ Ks( )794 36 (2 ) Ks( )363 21 (3 ) Ks( )100 11 Ks( )103 15 ( ) Ks( ) 62 9 Total1421 46 ’ ( ) K L 392 37 ( ) K L 62 13 Total 454 39
16
TCPV in B 0 'K 0 “sin2 1 ” = 0.64 0.10(stat) 0.04(syst) A = 0.01 0.07(stat) 0.05(syst) “sin2 1 ” = 0.64 0.10(stat) 0.04(syst) A = 0.01 0.07(stat) 0.05(syst) Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2 1 ” = +0.62 First observation of TCPV (5.6 in a single b s mode Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2 1 ” = +0.62 First observation of TCPV (5.6 in a single b s mode t distribution and asymmetry 'K S and 'K L combined background subtracted good tags t – t for 'K L hep-ex/0608039
17
B0 'K0B0 'K0 hep-ex/0607100 936 41 'K S signal 936 41 'K S signal 168 21 'K L signal 168 21 'K L signal
18
TCPV in B 0 'K 0 Cf. BaBar 2005: “sin2 ” = +0.36 0.13 0.03 “sin2 ” = 0.55 0.11(stat) 0.02(syst) A = 0.15 0.07(stat) 0.03(syst) “sin2 ” = 0.55 0.11(stat) 0.02(syst) A = 0.15 0.07(stat) 0.03(syst) “sin2 ” 4.9 from zero. hep-ex/0607100
19
BelleBaBar K0K0 K K K S K S K L K S Time-dependent Dalitz analysis K + K K S K + K K S 00 K + K K L K K K S K K K L f0K0f0K0 f 0 K S KKK0KKK0 K K excl. K S ’K0’K0 ’( K S ’( K S ’( 3 K S ’( K S ’( K S ’( 3 K S ’( K L ’( K L ’( 3 K L 3K S K S K S K S K S K S K S KS0KS0 K S KSKS K S Reconstruction modes K S K S K S K S
20
Vertex Reconstruction with K S good tag Ks track IP profile B CP vertex J/ K S with the K S Vertexing Raw asymmetry Extrapolate K S track to the Interaction Point Vertex reconstruction efficiency with a single K S : 30 to 45% (Belle), 60% (BaBar K S ) Events without the vertex can still be used for A-term measurement. Validity confirmed with J/ K S as a control sample.
21
TCPV in B 0 K S K S K S “sin2 1 ” = 0.30 0.32(stat) 0.08(syst) A = 0.31 0.20(stat) 0.07(syst) “sin2 1 ” = 0.30 0.32(stat) 0.08(syst) A = 0.31 0.20(stat) 0.07(syst) B 0 mass t distribution and asymmetry background subtracted good tags hep-ex/0608039 157 14K S K S K S 28 9K S K S K S 00 185 17 total 157 14K S K S K S 28 9K S K S K S 00 185 17 total
22
116 12K S K S K S 60 12K S K S K S 00 176 17 total 116 12K S K S K S 60 12K S K S K S 00 176 17 total m B & m miss instead of m ES & E “sin2 ” = 0.66 0.26(stat) 0.08(syst) A = 0.14 0.22(stat) 0.05(syst) “sin2 ” = 0.66 0.26(stat) 0.08(syst) A = 0.14 0.22(stat) 0.05(syst) TCPV in B 0 K S K S K S t distribution and asymmetry hep-ex/0607108
23
TCPV in B 0 K S “sin2 ” = 0.33 0.26(stat) 0.04(syst) A = 0.20 0.16(stat) 0.03(syst) “sin2 ” = 0.33 0.26(stat) 0.04(syst) A = 0.20 0.16(stat) 0.03(syst) 425 28 0 K S signal 425 28 0 K S signal hep-ex/0607096 missing mass & m B
24
TCPV in B 0 K S “sin2 1 ” = 0.35(stat) 0.08(syst) A = 0.14(stat) 0.05(syst) “sin2 1 ” = 0.35(stat) 0.08(syst) A = 0.14(stat) 0.05(syst) 515 32 0 K S signal 515 32 0 K S signal Raw symmetry B 0 mass good tags hep-ex/0609006
25
TCPV in B 0 K S “sin2 1 ” = 0.46(stat) 0.07(syst) A = 0.29(stat) 0.06(syst) “sin2 1 ” = 0.46(stat) 0.07(syst) A = 0.29(stat) 0.06(syst) 118 18 K S signal 118 18 K S signal B 0 mass Raw symmetry good tags hep-ex/0609006
26
TCPV in B 0 K S “sin2 ” = 0.62 (stat) 0.02(syst) A = 0.43 (stat) 0.03(syst) “sin2 ” = 0.62 (stat) 0.02(syst) A = 0.43 (stat) 0.03(syst) +0.23 0.25 +0.25 0.30 142 17 K S signal hep-ex/0607101
27
Summary Smaller than b ccs in all of 9 modes Smaller than b ccs in all of 9 modes Theory tends to predict SM contamination in positive side Naïve average of all b s modes sin2 eff = 0.52 ± 0.05 2.6 deviation Naïve average of all b s modes sin2 eff = 0.52 ± 0.05 2.6 deviation More statistics crucial for mode-by-mode studies
28
NP contribution to penguin diagram bRbR ~ _ __ d b s s s d _ g sRsR ~ _ g ~
31
Experimental Tools Event Shape (Jet-like) (Spherical) Bkg signal Likelihood Ratio Likelihood Ratio of signal event (event shape variables) Kinematic variables (M bc /m ES, E) signal
32
Belle signal yield extraction J/ K J/ K S EE M bc J/ K L pB*pB* KK (K K )K S EE M bc R s/b (K S K L )K S M bc R s/b K S EE M bc R s/b KLKL pB*pB* ’K’K ’ K S EE M bc R s/b ’ K S EE M bc R s/b ’KL’KL pB*pB* 3K K S K S K S EE M bc R s/b K S K S K S EE M bc R s/b
33
Sources of S: Three basic sources of S: V tb V* ts = -V cb V* cs -V ub V* us =-A 2 +A(1- ) 4 - i A 4 +O( 6 ) (also applies to pure penguin modes) u-penguin (radiative correction): V ub V* us (also applies to pure penguin modes) color-suppressed tree Other sources? LD u-penguin, CA tree? Chua FPCP06
34
FSI effects in mixing induced CP violation of penguin modes are small The reason for the smallness of the deviations: The dominant FSI contributions are of charming penguin like. Do not bring in any additional weak phase. The source amplitudes (K * ,K ) are small (Br~10 -6 ) compare with Ds*D (Br~10 -2,-3 ) The sources with the additional weak phase are even smaller (tree small, penguin dominate) If we somehow enhance K * ,K contributions ⇒ large direct CP violation (A Ks ). Not supported by data Chua FPCP06
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.