Download presentation
Presentation is loading. Please wait.
1
Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009 The Double Chooz reactor neutrino experiment
2
Neutrino oscillations Δm sol 2 ~ 7.6∙10 -5 eV 2, sin 2 (2Θ 12 ) ~ 0.85 Δm atm 2 ~ 2.4∙10 -3 eV 2, sin 2 (2Θ 23 ) ~ 1 ν2ν2 Δm atm 2 Δm sol 2 ν1ν1 ν3ν3 sin 2 Θ 13 sin 2 Θ 23 sin 2 Θ 12 νeνe νμνμ ντντ
3
Why Double Chooz ? Improved knowledge of mixing matrix Key experiment to unveil leptonic CP violation Discovery potential: hint given by global analysis Fogli et al., arXiv:0905.3549 (2009) Complementarity to beam experiments - Degeneracies + parameter correlations - Optimize future accelerator experiments Discrimination power of 0νββ Safeguard applications,…
4
Reactor neutrino experiments 1956: First observation (Nobel Prize 1995) 1990s: Chooz, Palo Verde (sin 2 2Θ 13 < 0.2) 2002: KamLand Δm 12, Θ 12 Reactor neutrinos: Pure ν e - beam Intense flux (~2% precision) Detection: inverse β-decay Energy: few MeV
5
Double Chooz collaboration Spokesman: H. de Kerret (APC) France: CEA Saclay, APC Paris, Subatech Nantes, IPHC Strasbourg Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen USA: Univ. of Alabama, Argonne Nat. Lab., Chicago, Drexel, Kansas State, LLNL, Notre Dame, Tennessee, Columbia Univ., Davis, MIT, Sandia Spain: CIEMAT Madrid Japan: Tohoku University, Kobe University, Tokyo Inst. of Tech., Niigata University, Tokyo Metropolitan University, Hiroshima Inst. of Tech. England: University of Sussex Russia: RAS Moskau, Kurchatov Institute Brasil: CBPF Rio de Janeiro, UNICAMP
6
The Double Chooz principle
7
Survival probability G. Mention (APC) D near D far Survival probability assuming sin 2 (2Θ 13 ) = 0.2 for different Δm 13
8
Current proposals Angra Double-Chooz Kaska Daya bay RENO
9
Neutrino signal n e p 511 keV e+e+ ~ 8 MeV Gd Target: Gadolinium loaded liquid scintillator Neutrino rates: - far: ~50/day - near: ~300/day 235 U β β 236 U n pure e source E ν ~ MeV E min ~ 1.8 MeV > 10 20 /(s∙GW) Chooz: ~ 7.4 GW th prompt delayed (30 µs)
10
Background Accidentals n ~ 8 MeV + E ≥ 1 MeV Gd n ~ 8 MeV Gd fast neutrons β-n-cascades: 9 Li, 8 He Chooz data: far detector: ca. 1.4/day Long lived!
11
Detector Design TARGET (2.3m) - Acrylic vessel (8mm) - 10,3 m 3 LS (1 g/l Gd) γ-catcher (0.55m) - Acrylic vessel (12mm) - 22,6 m 3 LS Buffer (1.05m) -Steel (3 mm) - 110 m 3 oil Inner Veto (0.5m) -Steel (10 mm) - 80 m 3 LS 7m
12
Calibration systems Target GC Buffer Articulated arm z-axis system (glove box) Guide tube / wire sources LED system / multi-wavelength Buffer tube
13
Comparison with Chooz FehlerChoozDC Statistical2.8%0.4% Flux, σ1.9 %<0.1 % E/fission0.6 %<0.1 % power0.7 %<0.1 % # protons0.8 %0.2 % Det.eff.1.5 %0.5 % Σ System.2.7 %~ 0.6% Best limit: CHOOZ sin 2 (2θ 13 ) < 0.15 (90% CL) for m 2 atm = 2.5·10 -3 eV 2 R = 1.01 2.8%(stat) 2.7%(syst) Reactor Detector
14
Sensitivity 2010 Sensitivity 2010 – 2015 (near detector starts < 2 y after far) for m 2 atm = 2.8·10 -3 eV 2 Far detector filling early 2010!
15
Far detector installation Lab cleaning Installation Veto and Veto-PMTsInstallation Buffertank
16
PMT installation
17
Acrylic vessel installation Arrival Gamma Catcher on-siteAcrylic vessels in lab Gamma Catcher installationGamma Catcher transport
18
Status October ‘09
19
Status near detector Tunnel (155 m), 12% Site engineering study completed excavate 2010 r = 415 m (115 m w.e.) Myons (Veto): 250 Hz reactors near detector Laboratory Open ramp (85 m), 14% Liquid storage Data taking: 2011
20
Scintillator development (MPIK) Requirements: Gd-solubility > 1 g/l Stability (5 years) Transparency Material compatibility Radiopurity Target – Gamma catcher matching (optics + density) Large scale (multi tons) Light yield PXE conc, PPO conc.
21
Scintillator properties Target Gamma Catcher candidates Event localization by pulse shape analysis Transparency in ROI stable in 10 m range! Time [ns] Events
22
All components (40 tons) delivered to MPIK Purifications finalized, prepare for mixing Scintillator production starts Large scale production
23
PMT activities at MPIK Testing / Calibration Assembly / Installation Implementation of data in Double Chooz software Current upgrade: full detector segment
24
PMT calibration Calibration program: HV scans Single photon electron (P/V) Transit time Dark rate Quantum efficiency
25
Summary Goal of Double Chooz reactor neutrino experiment: Determination of mixing angle Θ 13 (sin 2 (2θ 13 ) ~ 0.03) 2-detector concept to reduce systematical error Detection via inverse β-decay in Gadolinium loaded liquid scintillator Schedule: –Data taking far detector: Spring 2010 –Near detector: end of 2011 MPIK: scintillators, PMTs, Analysis
26
Θ 13 and 0νββ Normal hierarchy: discrimination power of 0 ν ββ-exp. depends on sin 2 (2 Θ 13 ) ! M.Lindner, A.Merle, W.Rodejohann, Phys.Rev.D73:073012 (2006)
27
Positron spectrum Far/Near ratio sin 2 (2 13 )=0.12 e + spectrum Far Detetector Stat. Errors
28
Sensitivity (rate vs shape)
29
Robustness
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.