Download presentation
Presentation is loading. Please wait.
1
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture How to include these microstructure-scale mechanisms into a statistical description ? Fracture surface = trace of propagating front Dynamics of crack propagation
2
zz hh x z h =0.75 Self-affine surface 1/2 (nm) Slope : = 0.75 hh zz 4- Statistical characterization of fracture
3
The Chinese University of Hong-Kong, September 2008 OUTLINE 1- Crack in 2D 2- Interfacial fracture 3- 3D crack propagation
4
The Chinese University of Hong-Kong, September 2008 Crack propagation in a 2D sample (Salminen et al.) Paper PMMA (Santucci et al.) 4- Statistical characterization of fracture
5
Position x(mm) Height h(x) (mm) The Chinese University of Hong-Kong, September 2008 Paper (Salminen & al, 03)
6
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture x x+ x h (r) y
7
4- Statistical characterization of fracture x x+ x y Zmax( x) Paper (Salminen & al, 03) The Chinese University of Hong-Kong, September 2008 ≈0.5-0.7
8
4- Statistical characterization of fracture R k ( x)/R k G Log 10 ( x/ 0 ) PMMA Paper x/ 0 h k ( x)/R k G PMMA ≈0.6 Paper ≈0.6 S. Santucci et al., 07
9
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Interfacial fracture (K.J. Måløy et al.)
10
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Interfacial fracture (J. Schmittbuhl et al. 97) z(mm) x(mm) Log 10 (f) Log 10 (P(f)) ’≈0.55 ≈50 m ≈ size of heterogeneities
11
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture x x x =28.1µm/s; a=3.5µm Interfacial fracture (K.J. Måløy et al. 06) Waiting time matrix: t=0 W(z,x)=0 t>0 W t (z,x)=1+W t-1 (z,x) if front in (z,x) Front location Spatial distribution of clusters (white) v(z,x)>10
12
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Interfacial fracture (K.J. Måløy et al. 06) 0.39µm/s≤ ≤40µm/s 1.7µm ≤a≤10µm C=3 Velocity distributionCluster size distribution Slope -1.6 Slope -2.55
13
Interfacial fracture, S. Santucci et al., 08 The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture
14
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Intermittency of interfacial crack propagation (A. Marchenko et al., 06)
15
Humid air n-tetradecane
16
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Humid air Tetradecane
18
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture f(z) Out-of-plane Projection on the yz plane In-plane Projection on the xz plane Fracture of 3D specimens
19
Al-alloy & Ti 3 Al-based alloy 4- Statistical characterization of fracture P.Daguier et al. (95) x ’≈0.55-06
20
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Out-of-plane roughness measurements Polishing
21
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Al alloy Ni-plated BS SEM (E.B. et al., 89) r/ C(r) r ≈0.8
22
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Profiles perpendicular to the direction of crack propagation
23
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture (P. Daguier & al., 96) = 0.78 from 5nm to 0.5mm zz Profiles perpendicular to the direction of crack propagation ( z) (µm)
24
Aluminium alloy =0.77 3nm 0.1mm The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture = 0.77 Z max ( z) (µm) z (µm) (M. Hinojosa et al., 98) Profiles perpendicular to the direction of crack propagation
25
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture (J. Schmittbuhl et al, 95) Profiles perpendicular to the direction of crack propagation: granite ≈0.8 ≈0.85
26
z (µm) direction of crack front x (µm) direction of crack propagation Anisotropy of fracture surfaces ~ 0.8 ~ 0.6 Direction of crack propagation Direction of crack front Log(Δx), log(Δz) Log (Δh) L. Ponson, D. Bonamy, E.B. (05) 11010 2 10 3 1 10 0.1 The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture
27
Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-cristaux (STM) 130mm Δh 2D (Δz, Δx) = ( A ) 1/2 h (nm) z (nm) AB ΔxΔx ΔzΔz L. Ponson, D. Bonamy, E.B. PRL 2006 L. Ponson et al, IJF 2006 h/ x z/ x 1/ z = 0.75 = 0.6 Z = / ~ 1.2 z
28
Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm Quasi-crystals Courtesy P. Ebert Coll. D.B., L.P., L. Barbier, P. Ebert z z = 0.75 = 0.6 z = / ~ 1.2 h (Å) 4- Statistical characterization of fracture
29
Béton (Profilométrie) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert 4- Statistical characterization of fracture
30
Mortar (Profilometry) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z Mortar (Coll. S. Morel & G. Mourot) h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert 4- Statistical characterization of fracture
31
Mortar (Profilometry) Glass (AFM) Metallic alloy (SEM+Stereo) Quasi-crystals (STM) AB ΔxΔx ΔzΔz 130mm z/ x 1/z ( l z / l x ) 1/ ( z/ l z )/( x/ l x ) 1/ z h/ x ( h/ l x )/( x/ l x ) Universal structure function Very different length scales h (Å) Coll. D.B.,L.P.,L. Barbier,P. Ebert 4- Statistical characterization of fracture
32
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Exponent 1mm Preliminary results (G. Pallarès, B. Nowakowski et al., 08)
33
The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Exceptions… Sandstone fracture surfaces log(P(f)) log(f) ≈0.47 (Boffa et al. 99) z P( h) h/( z) (Ponson at al. 07)
34
« Model » material : sintered glass beads (Coll. H. Auradou, J.-P. Hulin & P. Vié 06) Porosity 3 to 25% Grain size 50 to 200 m Vitreous grain boundaries Linear elastic material The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture Exceptions…
35
ζ =0.4 ± 0.05 β =0.5 ± 0.05 z =ζ/β =0.8 ±0.05 2 independent exponents « Universal » structure function + Structure 2D Roughness at scales > Grain size 1/ z 4- Statistical characterization of fracture (Ponson et al. 06)
36
Summary Cracks propagating through disordered media oare rough self-affine (5 decades) ouniversal roughness exponents : ’ ≈0.6 ≈0.8, ≈0.6 oproceed through avalanches The Chinese University of Hong-Kong, September 2008 Not convincing for paper… at length scales < heterogeneity size… What about sandstone and sintered glass? HOW TO MAKE SENSE OF ALL THIS????????
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.