Presentation is loading. Please wait.

Presentation is loading. Please wait.

GEOMETRIC ALGEBRAS IN E.M. Manuel Berrondo Brigham Young University Provo, UT, 84097

Similar presentations


Presentation on theme: "GEOMETRIC ALGEBRAS IN E.M. Manuel Berrondo Brigham Young University Provo, UT, 84097"— Presentation transcript:

1 GEOMETRIC ALGEBRAS IN E.M. Manuel Berrondo Brigham Young University Provo, UT, 84097 berrondo@byu.edu

2 Physical Applications: Electro-magnetostatics Dispersion and diffraction E.M.

3 Examples of geometric algebras Complex Numbers G 0,1 = C Hamilton Quaternions G 0,2 = H Pauli Algebra G 3 Dirac Algebra G 1,3

4 Extension of the vector space inverse of a vector: reflections, rotations, Lorentz transform. integrals: Cauchy (≥ 2 d), Stokes’ theorem Based on the idea of MULTIVECTORS: and including lengths and angles:

5 Algebraic Properties of R + closure commutativity associativity zero negative closure commutativity associativity unit reciprocal and + distributivity Vector spaces :linear combinations

6 Algebras include metrics : define geometric product FIRST STEP: Inverse of a vector a ≠ 0 a -1 a 1 2 0

7 Orthonormal basis 3d: ê 1 ê 2 ê 3 ê i ê k =  i k ê i -1 = ê i Euclidian 4d:  0  1  2  3  μ  ν = g μν  (1,-1,-1,-1) Minkowski 1 Example: (ê 1 + ê 2 ) -1 = (ê 1 + ê 2 )/2

8 Electrostatics: method of images w r q - q q q l Plane: charge -q at cê 1, image (-q) at -cê 1 Sphere radius a, charge q at bê 1, find image (?)

9 Choose scales for r and w: rwcharge 0 a V = 0 cbq -c-c?q’ = ?

10 SECOND STEP: EULER FORMULAS In 3-d: given that In general, rotating A about θ k:

11 Example: Lorentz Equation q B = B k

12 THIRD STEP: ANTISYM. PRODUCT sweep a b a b anticommutative associative distributive absolute value => area

13 Geometric or matrix product non commutative associative distributive closure: extend vector space unit = 1 inverse (conditional)

14 Examples of Clifford algebras NotationGeometryDim. G2G2 plane4 G 0,1 complex2 G 0,2 quaternions4 G3G3 Pauli8 G 1,3 Dirac16 G m,n signature (m,n)2 m+n

15 1scalar vector bivector R I R R2R2 C = even algebra = spinors G2 :G2 :

16 C isomorphic to R 2 1 e1e1 I e2e2 z z * a z = ê 1 a ê 1 z = a Reflection: z  z * a  a’ = ê 1 z* = ê 1 a ê 1 In general, a’ = n a n, with n 2 = 1

17 Rotations in R 2 Euler: e1e1 e2e2 a a’ φ

18 Inverse of multivector in G 2 Conjugate : Generalizing

19 1 1 scalar ê1ê1 ê2ê2 ê3ê3 3 vector ê2ê3ê2ê3 ê3ê1ê3ê1 ê1ê2ê1ê2 3 bivector ê 1 ê 2 ê 3 = i 1 pseudoscalar R iRiR R3R3 H = R + i R 3 = = even algebra = spinors iR3iR3 G3G3

20 Geometric product in G 3 : Rotations: e P/2 generates rotations with respect to plane defined by bivector P

21 Inverse of multivector in G 3 defining Clifford conjugate : Generalizing:

22 Geometric Calculus (3d)  is a vector differential operator acting on:  (r) – scalar field E(r) – vector field

23 First order Green Functions Euclidian spaces : is solution of

24 Maxwell’s Equation Maxwell’s multivector F = E + i c B current density paravector J = (ε 0 c) -1 (cρ + j) Maxwell’s equation:

25 Electrostatics Gauss’s law. Solution using first order Green’s function: Explicitly:

26 Magnetostatics Ampère’s law. Solution using first order Green’s function: Explicitly:

27 Fundamental Theorem of Calculus Euclidian case : d k x = oriented volume, e.g. ê 1 ê 2 ê 3 = i d k-1 x = oriented surface, e.g. ê 1 ê 2 = iê 3 F (x) – multivector field,  V – boundary of V

28 Example: divergence theorem d 3 x = i d , where d  = |d 3 x| d 2 x = i nda, where da = |d 2 x| F = v(r)

29 Green’s Theorem (Euclidian case ) where the first order Green function is:

30 Cauchy’s theorem in n dimensions particular case : F = f y  f = 0 where f (x) is a monogenic multivectorial field:  f = 0

31 Inverse of differential paravectors: Helmholtz: Spherical wave (outgoing or incoming)

32 Electromagnetic diffraction First order Helmholtz equation: Exact Huygens’ principle: In the homogeneous case J = 0

33 Special relativity and paravectors in G 3 Paravector p = p 0 + p Examples of paravectors: xct + r u  (1 + v/c) pE/c + p  φ + cA jcρ + j

34 Lorentz transformations Transform the paravector p = p 0 + p = p 0 + p = + p ┴ into: B p B = B 2 (p 0 + p = ) + p ┴ R p R † = p 0 + p = + R 2 p ┴


Download ppt "GEOMETRIC ALGEBRAS IN E.M. Manuel Berrondo Brigham Young University Provo, UT, 84097"

Similar presentations


Ads by Google