Download presentation
Presentation is loading. Please wait.
1
NlogN Entropy Optimization Sarit Shwartz Yoav Y. Schechner Michael Zibulevsky Sponsors: ISF, Dvorah Foundation 1
2
Kernel Estimators: Parzen Windows Data True PDF Estimated PDF Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 49
3
Previous Work Parametric PDF: Hyvärinen 98, Bell; Sejnowski 95, Pham; Garrat 97. Cumulants: Cardoso ; Souloumiac 93. Not accurate
4
Order statistics: Vasicek 76, Learned-Miller; Fisher 03. KD trees: Gray; Moore 03. Previous Work Not differentiable
5
Entropy Estimation Kernel Estimators: reduced complexity Pham, 03,. Erdogmus; Principe; Hild, 03, Morejon; Principe 04, Schraudolph 04, (Stochastic gradient).
6
Source Range: Continuous
7
Parzen Windows Estimator Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 50
8
Minimization of Mutual Information Differentiable Computationally efficient - Currently O ( K N ) Independent Component Analysis Shwartz, Schechner & Zibulevsky, NlogN entropy optimization online code (see website) 51 2 2
9
ConvolutionSampling Parzen Windows as a Convolution Shwartz, Schechner & Zibulevsky, NlogN entropy optimization Wish it was … Discrete convolution 52
10
Efficient Kernel Estimator A.Samples of estimated sources A PDF estimation Fan; Marron 94, Silverman 82. Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 53
11
A.Samples of estimated sources B.Interpolation to uniform grid (histogram) A B Efficient Kernel Estimator PDF estimation Fan; Marron 94, Silverman 82. Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 53
12
C Samples of estimated sources Interpolation to uniform grid (histogram) Discrete convolution with Parzen window A B PDF estimation Fan; Marron 94, Silverman 82. Efficient Kernel Estimator Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 53
13
D Efficient Entropy Estimator C Interpolation to original values A Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 54
14
Can it be Used for Optimization? W separate Iterations exploiting derivatives of. Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 55
15
Can it be Used for Optimization? W separate Binning fluctuations of. Fluctuations amplified by differentiation. Fluctuations slow convergence, false minima. Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 56
16
Function Quantized function Quantization and Optimization Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 57
17
Function Quantized function Function with a quantized derivative Quantization and Optimization Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 57
18
Analytic Entropy Gradient Accurate derivative Efficient calculation Shwartz, Schechner & Zibulevsky, NlogN entropy optimization
19
Complexity Analytic Entropy Gradient K - number of sources, N -data length. Shwartz, Schechner & Zibulevsky, NlogN entropy optimization
20
Entropy Gradient by Convolutions Convolution Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 58
21
Calculation of using convolutions. Approximation of convolutions with complexity. Distinct quantization of the derivative. Not differentiation of a quantized function. Entropy Gradient by Convolutions Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 59
22
K =6 random sources, N = 3000 samples. Algorithm Signal to Interference ratio [dB] Time Basic Non-param ICA 18 4760 min. Our algorithm22 31.2 min. Jade7 40.2 sec. Infomax8 41.6 sec. Fast ICA5 31.9 sec. Super ICA performance Parametric algorithms. Non-parametric algorithms. Shwartz, Schechner & Zibulevsky, NlogN entropy optimization 60
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.