Download presentation
Presentation is loading. Please wait.
1
Optimization And Differential Equations 最佳化與微分方程 Peng-Jen Lai ( 賴鵬仁 ) Department of Mathematics National Kaohsiung Normal University ( 高雄師範大學數學系 ) ( 高雄師範大學數學系 )20111102 國立清華大學工業工程與工程管理系微分 方程專題演講
2
Content 有限維度與無窮維度之最佳化問題 有限維度與無窮維度之最佳化問題 The calculus of variation 變分問題之最佳解 The calculus of variation 變分問題之最佳解 1. Some examples 2. Review of calculus 3. Euler-Lagrange Equation 工業應用之例子 工業應用之例子
4
給一個實數會對應到一個實數值,這種映射關係叫函數 function ,前一頁是求函數極值 ( 最佳值 ) 之例子。實數軸是 一維,所以是在一維空間搜尋最佳解,他的主要數學工具 是微積分。 給一個實數會對應到一個實數值,這種映射關係叫函數 function ,前一頁是求函數極值 ( 最佳值 ) 之例子。實數軸是 一維,所以是在一維空間搜尋最佳解,他的主要數學工具 是微積分。 給一個函數會對應到一個實數值,這種映射關係叫泛函 functional, functional operator( 範函算子 ), operator 算子,上 面, F 就是一個泛函,上例是求泛函極值 ( 最佳值 ) 之例子。 函數空間是無窮維,所以是在無窮維空間搜尋最佳解,他 的主要數學工具是泛函分析跟變分法。 給一個函數會對應到一個實數值,這種映射關係叫泛函 functional, functional operator( 範函算子 ), operator 算子,上 面, F 就是一個泛函,上例是求泛函極值 ( 最佳值 ) 之例子。 函數空間是無窮維,所以是在無窮維空間搜尋最佳解,他 的主要數學工具是泛函分析跟變分法。
5
三維的函數極值
6
Review of calculus c is a critical point c is a critical point of f(x) if f ’(c)=0 or f ’(c) does not exist (a singular point 奇異點、 尖點、或不連續的點 ).
7
Relative extrema may Relative extrema may occur at a singular point or an end point. Remark: Larson 那本書 要求 relative extrema 一定是內點.
8
那些最佳化 ( 求極值 ) 的問題 會跟微分方程有關係 ? 那些最佳化 ( 求極值 ) 的問題 會跟微分方程有關係 ? 答案是,泛函算子的最佳化 ( 求極值 ) 問題會跟微分方程 有關係 答案是,泛函算子的最佳化 ( 求極值 ) 問題會跟微分方程 有關係
9
What is the calculus of variation ( 變 分法 ) ? The calculus of variation is a theory to discuss how to find (the) optimal solutions to the following problem: The calculus of variation is a theory to discuss how to find (the) optimal solutions to the following problem:
10
The shortest path (geodesic 測地線 ) problem Find the shortest curve joinning A and B. Find the shortest curve joinning A and B. Mathematical Modelling 數學建模 : Mathematical formulation:
13
The brachistochrone problem 最速降線問題 Among all smooth curves in a vertical plane join a given point A to a given lower point B not directly below it, find that particular curve along which a particle will slide down from A to B in the shortest possible time. 重力下的最快下降曲線 國立中央大學物理演示 實驗 11, 2, 323
16
Theorem Suppose f, u to be twice differentiable. Theorem Suppose f, u to be twice differentiable. If u minimizes, then u satisfies the E-L equation If u minimizes, then u satisfies the E-L equation
17
Euler-Lagrange Equation
20
Solve the Brachistochrone problem by the E-L equation
24
數學建模本來就無所不在
25
Conclusion: the relation between optimization and differential equation
26
變分法與微分方程之求解是雙向的
27
References 1. P. Neittaanmäki, D. Tiba, Optimal control of nonlinear parabolic systems, Marcel Dekker 1994. 2. 徐長發, 科技應用中的微分變分模型, 華中科大出版 2004. 3. G.F. Smmons, Differential equations with applications and historical notes 1991. 4. J. Jost, Calculus of variation, Cambridge 1998. 5. J. Jost, Postmodern analysis, Springer 1998. 6. Russak, Calculus of Variations & Solution Manual ch2, 2002. 7. Sasane, Calculus of Variations & Optimal Control 2004. 8. R. Weinstock, Calculus Of Variations, With Applications To Physics And Engineering 1974. 9. Bernard Dacorogna, INTRODUCTION TO THE CALCULUS OF VARIATIONS. 10. Byerly, Introduction To The Calculus Of Variations 1917.
28
Thank you for your attention! 清大山社 200807 嘉明湖會師
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.