Download presentation
Presentation is loading. Please wait.
1
The ALICE Transition Radiation Detector Design and Performance detector principle and overview results from testbeam measurements dE/dx transition radiation electron/pion separation position and angular resolution performance of electronics status of the project Johannes P. Wessels, Universität Münster for the ALICE TRD Collaboration IEEE Nuclear Science Symposium, Rome, Oct. 16-22, 2004
2
ALICE Setup ALICE setup ITS TPC TRD TOF PHOS HMPID MUON ARM PMD FMD
3
Transition Radiation Detector (TRD) Purpose: electron ID in central barrel p>1 GeV/c fast trigger for high p t particles Parameters: 540 modules -> ~760m 2 length: 7m anticipated X/X 0 ~ 15 % 28 m 3 Xe/CO 2 (85:15) 1.2 million channels 17 million pixels 15 TB/s on-detector bandwidth weight ~ 21 t total power: ~ 60kW
4
Principle of Operation two purposes: PID & momentum measurement 7 mm 31 mm 48 mm
5
Radiator polypropylene fibers (~17 m) CF-backed ROHACELL foam irregular sandwich radiator parameterized for simulations
6
Full Size Radiator size: 1200x1600 mm 2 deformation at center 1 mm @ 1 mbar
7
Assembly of TRD Chambers - precision mounting jigs - 3D measurement system
8
Mounting of Electronics
9
Radiator Comparison method: likelihood on total charge averaged over 4 detectors extrapolated to six layers pion rejection of 100 achieved over large momentum range little dependence on actual radiator producer
10
Improvement of -rejection bi-dimensional likelihood analysis improves pion rejection probability of finding largest cluster in a given time bin
11
-Rejection Using Neural Network feed-forward neural network w. 15 input neurons 2 hidden layers factor 3-7 improvement over LQX method pion rejection of 200-500
12
-Rejection vs. incident angle slight deterioration of pion rejection at small angles (0 o -2 o ) not frequent in ALICE space charge effects diminish signal not included in simulations low gas gain preferable
13
Resolution vs. Incident Angle quantitative understanding of all resolution effects significant improvement in position resolution with tail merging and tail cancellation position resolution better than 300 m angular resolution better than 0.8 o
14
Resolution vs. Signal-to-Noise resolution better for pions at given S/N ratio average signal larger for electrons comparable resolution for electrons and pions angular resolution smaller for electrons with radiator -> L-shell fluorescence
15
TRD electronics chain PASA TRAP - digital chip 40mm
16
Preamp Shaper (PASA) 18 4 th order preamplifier/shapers with differential outputs (21) 12 mV/fC, 13 mW/channel digital test structure for chip verification size of chip: 3030 µm x 7280 µm full production received; thinned to 300 µm
17
PASA – test results gain: 12.2mV/fC dynamic range: 0.15fC..165fC shaping time: 40ns FWHM: 120ns differential output: -1..+1V noise at 25pF: 702e noise slope: 21e/pF integral non-linearity: <0.16% power consumption: 13 mW/channel crosstalk as function of inter-pad capacitance
18
ADC Performance Muthers, Tielert, Kaiserslautern 0.18 m CMOS 10 bit, 10 Ms/s 0.1 mm 2, 9.5 mW ENOB: 9.5 @ 1 MHz DNL: -0.4;0.6 INL: -0.8;0.7
19
Filter Non- linearity Pedestal Gain Tail Crosstalk
20
TRD Trigger Timing Drift time 59901996998299439924990 t [ns] relevantpipelineADCoutput Calculate fit PASAADC Tracklet Preprocessor TPP TRD event buffer CalculateTracklets Tracklet Preprocessor TPP Tracklet Processor TP event buffer Tracklet Merger TM Data ship Global Tracking GTU TRD N. Herrmann, V. Lindenstruth, B. Vulpescu
21
TRD Stack Preparation test of 6 chambers at CERN this week e/ - beam up to 10 GeV/c
22
Cosmic Ray Track readout with MCMs Ar/CO 2 (85/15) V anode = 1400 V v d = 2.6 cm/ s
23
Summary pion rejection and tracking capability fulfill specs quantitative understanding of dE/dx, position and angular resolution TR production & absorption promising results of PASA and digital ASIC evaluation good trigger capability for high p t charged particles starting series production now aim to be ready for first events in 2007 physics performance report http://alice.web.cern.ch/ALICE/ppr
24
ALICE TRD Collaboration C. Adler, A. Andronic, V. Angelov, H. Appelshäuser, C. Baumann, T. Blank, C. Blume, P. Braun-Munzinger, D. Bucher, O. Busch, V. Catanescu, V. Chepurnov, S. Chernenko, M. Ciobanu, H. Daues, D. Emschermann, O. Fateev, S. Freuen, P. Foka, C. Garabatos, H. Gemmeke, R. Glasow, H. Gottschlag, T. Gunji, M. Gutfleisch, H. Hamagaki, N. Heine, N. Herrmann, M. Inuzuka, E. Kislov, V. Lindenstruth, C. Lippmann, W. Ludolphs, T. Mahmoud, A. Marin, J. Mercado, D. Miskowiec, Y. Panebratsev, V. Petracek, M. Petrovici, C. Reichling, K. Reygers, A. Sandoval, R. Santo, R. Schicker, R. Schneider, S. Sedykh, R.S. Simon, L. Smykov, J. Stachel, H. Stelzer, H. Tilsner, G. Tsiledakis, I. Rusanov, W. Verhoeven, B. Vulpescu, J.W., B. Windelband, C. Xu, V. Yurevich, Y. Zanevsky, O. Zaudtke Physikalisches Institut, Universität Heidelberg, Germany; GSI, Darmstadt, Germany; Kirchhoff Institut, Universität Heidelberg, Germany; FZ Karlsruhe, Germany; Universität Frankfurt, Germany; Universität Münster, Germany; NIPNE, Bucharest, Romania; JINR, Dubna, Russia; University of Tokyo, Japan
25
Transition Radiation Poisson distribution for measured TR photons some loss of TR clusters in analysis 2 GeV/c Parameterization as regular foil stack 270 interfaces, 10 m thick, 80 m spacing no momentum dependence in simulation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.