Download presentation
Presentation is loading. Please wait.
1
Extensible Array C and Data Structures Baojian Hua bjhua@ustc.edu.cn
2
Data Structures Data structure studies the organization of data in computers, consisting of the (abstract) data types (definition and repr ’ ) relationship between elements of this type operations on data types Algorithms: operations on data structures subtle interplay with data structure design Slogan: program=data structures + algorithm
3
What will this part cover? Linear structures: extensible array, linked list, stack, queue, string, etc. Tree & forest: binary tree, binary search tree Graph Hash Sorting and Searching?
4
Linear Data Structures A linear list (list) consists of: a collection of data elements e1, e2, …, en (n≥0) elements are ordered: e1 ≤ e2 ≤ … ≤ en e i is called an predecessor of e i+1 e i+1 is called a successor of e i every element has at most one successor and one predecessor
5
Typical operations // create an empty list new (); // the length of a list l length (list l); // insert element x at position i in l, 0<=i<n insert (list l, x, i); // return the i-th element nth (list l, i); // delete the element at position i in l, 0<=i<n delete (list l, i); // apply function f to each element in l foreach (list l, f);
6
Polymorphic Abstract Data Types in C // in “list.h” #ifndef LIST_H #define LIST_H typedef struct List_t *List_t; List_t List_new (); int List_length (List_t l); poly List_nth (List_t l, int n); // “poly”? void List_insert (List_t l, poly x, int i); poly List_delete (List_t l, int i); void List_foreach (List_t l, void (*f)(poly)); #endif
7
Implementations Two well-known implementation techniques: array-based linked structure-based We next consider the first, and leave the second to the next slide
8
Implementation Using Array The straightforward method to implement this interface (ADT) is to use an array and the array may not be full, so we must keep a “ tail ” tag to record its tail (the position of its last elements) 0 n-1
9
Implementation Using Array The straightforward method to implement this interface is to use an array and the array may not be full, so we must keep a “ tail ” tag to record its tail (the position of its last elements) 0 n-1 tail
10
1st Try #define N 100 int main () { int a[N]; int tail = 0; a[tail++] = 3; a[tail++] = 5; … // what if we continue to insert value into “a”? } 0 n-1 tail
11
Array-based Implementation // Combine these above observations, we have: // in file “arrayList.c” #include #include “list.h” #define INIT_LENGTH 32 #define EXT_FACTOR 2 struct List_t { poly *array; int max; int tail; }; 0 n-1 array max tail l
12
Create an Empty List List_t List_new () { List_t l = malloc (sizeof (*l)); l->array = malloc (INIT_LENTH * sizeof(poly)); l->max = INIT_LENTH; l->tail = 0; return l; }
13
Create an Empty List List_t List_new () { List_t l = malloc (sizeof (*l)); l->array = malloc (INIT_LENTH * sizeof(poly)); l->max = INIT_LENTH; l->tail = 0; return l; } $#%& %$&^ @#%$ l
14
Create an Empty List List_t List_new () { List_t l = malloc (sizeof (*l)); l->array = malloc (INIT_LENTH * sizeof(poly)); l->max = INIT_LENTH; l->tail = 0; return l; } 0 n-1 array %$&^ @#%$ l
15
Create an Empty List List_t List_new () { List_t l = malloc (sizeof (*l)); l->array = malloc (INIT_LENTH * sizeof(poly)); l->max = INIT_LENTH ; l->tail = 0; return l; } 0 n-1 array max @#%$ l
16
Create an Empty List List_t List_new () { List_t l = malloc (sizeof (*l)); l->array = malloc (INIT_LENTH * sizeof(poly)); l->max = INIT_LENTH ; l->tail = 0; return l; } 0 n-1 array max tail l
17
Operation: “ length ” int List_length (List_t l) { // note that we omit such checks in the next // for clarity. However, You should always do // such kind of checks in your code. assert(l); return l->tail; } 0 n-1 array max tail l
18
Operation: “ nth ” poly List_nth (List_t l, int i) { if (i =l->tail) error (“invalid index”); return (l->array)[i]; } 0 n-1 array max tail l
19
Operation: “ nth ” poly List_nth (List_t l, int i) { if (i =l->tail) error (“invalid index”); return (l->array)[i]; } 0 n-1 array max tail l i temp
20
Operation: “ insert ” void List_insert (List_t l, poly x, int i) { if (i l->tail) error (“invalid index”); //move the data …; } 0 n-1 array max tail l i
21
Operation: “ insert ” void List_insert (List_t l, poly x, int i) { if (i l->tail) error (“invalid index”); for (int j=l->tail; j>i; j--) (l->array)[j] = (l->array)[j-1]; …; } 0 n-1 array max tail l i j
22
Operation: “ insert ” void List_insert (List_t l, poly x, int i) { if (i l->tail) error (“invalid index”); for (int j=l->tail; j>i; j--) (l->array)[j] = (l->array)[j-1]; …; } 0 n-1 array max tail l i j
23
Operation: “ insert ” void List_insert (List_t l, poly x, int i) { if (i l->tail) error (“invalid index”); for (int j=l->tail; j>i; j--) (l->array)[j] = (l->array)[j-1]; …; } 0 n-1 array max tail l i j
24
Operation: “ insert ” void List_insert (List_t l, void *x, int i) { if (i l->tail) error (“invalid index”); for (int j=l->tail; j>i; j--) (l->array)[j] = (l->array)[j-1]; (l->array)[i] = x; } x 0 n-1 array max tail l i j
25
Operation: “ insert ” void List_insert (list l, void *x, int i) { if (i l->tail) error (“invalid index”); for (int j=l->tail; j>i; j--) (l->array)[j] = (l->array)[j-1]; (l->array)[i] = x; (l->tail)++; } x 0 n-1 array max tail l i j
26
Perfect? What if the initial array look like the right one? direct data movement will incur an out-of- bound error! 0 n-1 array max tail l i
27
Extensible Array void List_insert (List_t l, poly x, int i) { if (i l->tail) error (“invalid index”); // if l is full, extend l->array by a factor… if (l->tail==l->max) { l->array = realloc (l->array, EXT_FACTOR*(l->max)*sizeof(poly)); l->max *= EXT_FACTOR; } // data movement as discussed above…; }
28
Extensible Array 0 n-1 array max tail l i 02n-1 i l->array = realloc (l->array, EXT_FACTOR*(l->max)*sizeof(poly)); n-1
29
Extensible Array 0 n-1 array max tail l i 02n-1 i n-1 l->array = realloc (l->array, EXT_FACTOR*(l->max)*sizeof(poly));
30
Extensible Array 0 n-1 array max tail l i 02n-1 i l->max *= EXT_FACTOR; l->array = realloc (l->array, EXT_FACTOR*(l->max)*sizeof(poly));
31
Extensible Array array max tail l 02n-1 i n-1
32
Operation: “ delete ” The “ delete ” operation is reverse operation of the “ insert ” also involves data movement should we shrink the extensible array, when there are few elements in it (say ½ data item left)? More tricky than first looks
33
Operation: “ foreach ” void List_foreach (List_t l, void (*f)(poly)) { for (int i=0; i tail; i++) f ((l->array)[i]); return; } 0 n-1 array max tail l
34
Summary Linear list ADT: a collection of ordered data element each item has no more than one successor or predecessor Extensible array-based implementation maintain internally a dynamically extensible array bad performance with insert or delete space waste
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.