Presentation is loading. Please wait.

Presentation is loading. Please wait.

(Informal) workshop - Ferrara April 2004 SNe. Astrophysical (natural) Explosive Devices Thermonuclear SNe Gravitational collapse C-deflagration He-detonation.

Similar presentations


Presentation on theme: "(Informal) workshop - Ferrara April 2004 SNe. Astrophysical (natural) Explosive Devices Thermonuclear SNe Gravitational collapse C-deflagration He-detonation."— Presentation transcript:

1 (Informal) workshop - Ferrara April 2004 SNe

2 Astrophysical (natural) Explosive Devices Thermonuclear SNe Gravitational collapse C-deflagration He-detonation C-delayed detonation Induced Core collapse (nuclear runaway fails) Pair instability, core collapse & O explosion (core collapse fails)

3 SNe Classification Core collapse of massive stars Thermonuclear explosion I b (strong He) I c (weak He) SNe II p Type II II L No H H Type I I a (strong Si) based on spectra and light curves morphologies

4 Type Ia light curve Riess et al., 1997 Brighter Slower Decline Dimmer Faster Decline standard candles visible up to z ~ 1

5  Supernova Cosmology Project  High-z Team (Brian Schmidt & co) The Universe is Accelerating 0.25 mag fainter than for an EMPTY Universe (Saul Perlmutter & co.) DLDL z Fainter  Further

6 Type IIp light curve: potential standard candles up to z ~ 5 (with NGST)

7 log  log P  5/3  4/3 M1M1 M2M2 Non-degenerate Non-relativistic relativistic Collapse or ignition The virial theorem: stellar core evolution

8 Stellar evolution M<0.8 M  0.8<M/M  <8 8<M/M  <11 11<M/M  <100 M>100 M   Gyr  Myr 0.5<M f /M  <1.1 CO WD   .  Myr M f =1.2-1.3 M  ONeMg WD .  1-10 Myr M f =1.2-2.5 M  Fe (Y e. 0.45) collapse NS or BH  #1  Myr O (pair jnstability) (Y e =0.5) may or may not explode

9 4 He 16 O 12 C 5 M  Z=0.02 Y=0.28 He-burning: the competition between 3  -> 12 C and 12 C+  -> 16 O+ 

10 E x (keV) JJ 10957 10367 9847 9580 8872 7117 6917 6130 6049 0 0-0- 4+4+ 2+2+ 1-1- 2-2- 1-1- 2+2+ 3-3- 0+0+ 0+0+ 12 C+ 4 He 2418 2685 3195 E CM (keV) Gamow peack energies -45 -245 16 O 16 O level scheme Q = 7.162 MeV LowAdop.high Kunz et al 2001 5.257.5810.2 Buchman n 1996 3.047.0413.04 NACRE 5.449.1112.8 CF88 4.74 CF85 11.3 N a (10 -15 cm 3 mol -1 s -1 ) for T 9 =0.2 Not an error bar

11 Carbon left in the core 0.8M  < M < 25M  (from Imbriani et al. 2001). High rate – empty circle Low rate - Black circle 1 Hp overshoot – triangle Breathing pulses - square CO WD ONeMg WD Core Collapse

12  Bright  Homogeneous  No evolutionary effects Supernovae Ia Light Curve L time 56 Ni  56 Co  56 Fe Thermonuclear Explosion of a CO WD M~M Chandrasekhar L  M Ni ~ 1.4 M 

13 H accreting WDs Single Degenerate system: WD+RG RG MS Merging scenario: Double Degenerate system: CO+CO a) GWR: ang. momentum loss b) secondary tidal disruption c) accretion 10 -5 M  yr -1 Roche lobe overflow

14 White Dwarf interior: C and O profiles 12 C(  ) 16 O High rate Low rate

15 12 C( ,n) 16 O and the final mass of 56 Ni  M( 56 Ni)=10%

16 15.3 d 18.0 d Rise time -19.30-19.21 MVMV LOWHIGHRate 18± 0.4 d HIGH Rate C/O  Observed: from Dominguez, Hoflich, Straniero 2002

17 Massive stars from Limongi, Chieffi & Straniero 2001  e -,e +   e-e- 

18 Pressure contributions Degenerate electrons Thermal contribution

19 At the onset of the core collapse e - +p  n+ e (10 MeV) 56 Fe+   13  +4n (124 MeV)

20 COLLAPSE, BOUNCE & STALL +0.2 ms -0.5 ms +2.0 ms 10 12 g/cm 3 3x10 14 g/cm 3 10 51 erg lost each 0.1 Mo subsonic | supersonic hard core (10 14 g/cm 3 )

21 Y e and 12 C(  ) 16 O Low rate (solid) High rate (dotted) from Imbriani et al. 2001

22 M-R relation: high rate = shorter C burning = more compact progenitor

23 Observable consequences: SN yields


Download ppt "(Informal) workshop - Ferrara April 2004 SNe. Astrophysical (natural) Explosive Devices Thermonuclear SNe Gravitational collapse C-deflagration He-detonation."

Similar presentations


Ads by Google