Download presentation
Presentation is loading. Please wait.
1
Fall 2004 Lecture Notes #7 EECS 595 / LING 541 / SI 661 Natural Language Processing
2
Representing Meaning
3
Introduction Meaning representation languages: capturing the meaning of linguistic utterances using formal notation Example: deciding what to order at a restaurant by reading a menu Example: answering a question on an exam Semantic analysis: mapping between language and real life I have a car: ∃ x,y: Having(x) ^ Haver(speaker,x) ^ HadThing(y,x) ^ Car(y)
4
Verifiability Example: Does LeDog serve vegetarian food? Knowledge base (KB) Sample entry in KB: Serves(LeDog,Vegetarian Food) Convert question to logical form and verify its truth value against the knowledge base
5
Unambiguousness Example: I want to eat some place near UM. (multiple interpretations) Interpretation is important Preferred interpretations Vagueness: I want to eat Italian food. - what particular food?
6
Canonical form Does LeDog have vegetarian dishes? Do they have vegetarian food at LeDog? Are vegetarian dishes served at LeDog? Does LeDog serve vegetarian fare? Having vs. serving Food vs. fare vs. dishes (each is ambiguous but one sense of each matches the others) word sense disambiguation
7
Inference and variables; expressiveness Inference and variables: –I’d like to find a restaurant that serves vegetarian food. –Serves (x,VegetarianFood) –System’s ability to draw valid conclusions based on the meaning representations of inputs and its store of background knowledge. Expressiveness: –system must be able to handle a wide range of subject matter
8
Predicate-argument structure I want Italian food. NP want NP I want to spend less than five dollars. NP want Inf-VP I want it to be close by here. NP want NP Inf-VP Thematic roles: e.g. entity doing the wanting vs. entity that is wanted (linking surface arguments with the semantic=case roles) Syntactic selection restrictions: I found to fly to Dallas. Semantic selection restrictions: The risotto wanted to spend less than ten dollars. Make a reservation for this evening for a table for two persons at eight: Reservation (Hearer,Today,8PM,2)
9
First-order predicate calculus (FOPC) Formula AtomicFormula | Formula Connective Formula | Quantifier Variable … Formula | ¬ Formula | (Formula) AtomicFormula Predicate (Term…) Term Function (Term…) | Constant | Variable Connective ∧ | ⋁ | ⇒ Quantifier ∀ | ∃ Constant A | VegetarianFood | LeDog Variable x | y | … Predicate Serves | Near | … Function LocationOf | CuisineOf | …
10
Example I only have five dollars and I don’t have a lot of time. Have(Speaker,FiveDollars) ∧ ¬ Have(Speaker,LotOfTime) variables: –Have(x,FiveDollars) ∧ ¬ Have(x,LotOfTime) Note: grammar is recursive
11
Semantics of FOPC FOPC sentences can be assigned a value of true or false. LeDog is near UM. Near(LocationOf(LeDog),LocationOf(UM))
12
Variables and quantifiers A restaurant that serves Mexican food near UM. ∃ x: Restaurant(x) ∧ Serves(x,MexicanFood) ∧ Near(LocationOf(x),LocationOf(UM)) All vegetarian restaurants serve vegetarian food. x: VegetarianRestaurant(x) ⇒ Serves (x,VegetarianFood) If this sentence is true, it is also true for any substitution of x. However, if the condition is false, the sentence is always true.
13
Inference Modus ponens: ⇒ Example: VegetarianRestaurant(Joe’s) x: VegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood) Serves(Joe’s,VegetarianFood)
14
Uses of modus ponens Forward chaining: as individual facts are added to the database, all derived inferences are generated Backward chaining: starts from queries. Example: the Prolog programming language father(X, Y) :- parent(X, Y), male(X). parent(john, bill). parent(jane, bill). female(jane). male (john). ?- father(M, bill).
15
Examples from Russell&Norvig (1) 7.2. p.213 Not all students take both History and Biology. Only one student failed History. Only one student failed both History and Biology. The best history in History was better than the best score in Biology. Every person who dislikes all vegetarians is smart. No person likes a smart vegetarian. There is a woman who likes all men who are vegetarian. There is a barber who shaves all men in town who don't shave themselves. No person likes a professor unless a professor is smart. Politicians can fool some people all of the time or all people some of the time but they cannot fool all people all of the time.
16
Categories & Events Categories: –VegetarianRestaurant (Joe’s) – categories are relations and not objects –MostPopular(Joe’s,VegetarianRestaurant) – not FOPC! –ISA (Joe’s,VegetarianRestaurant) – reification (turn all concepts into objects) –AKO (VegetarianRestaurant,Restaurant) Events: –Reservation (Hearer,Joe’s,Today,8PM,2) –Problems: Determining the correct number of roles Representing facts about the roles associated with an event Ensuring that all the correct inferences can be drawn Ensuring that no incorrect inferences can be drawn
17
MUC-4 Example INCIDENT: DATE30 OCT 89 INCIDENT: LOCATIONEL SALVADOR INCIDENT: TYPEATTACK INCIDENT: STAGE OF EXECUTIONACCOMPLISHED INCIDENT: INSTRUMENT ID INCIDENT: INSTRUMENT TYPE PERP: INCIDENT CATEGORYTERRORIST ACT PERP: INDIVIDUAL ID"TERRORIST" PERP: ORGANIZATION ID "THE FMLN" PERP: ORG. CONFIDENCEREPORTED: "THE FMLN" PHYS TGT: ID PHYS TGT: TYPE PHYS TGT: NUMBER PHYS TGT: FOREIGN NATION PHYS TGT: EFFECT OF INCIDENT PHYS TGT: TOTAL NUMBER HUM TGT: NAME HUM TGT: DESCRIPTION"1 CIVILIAN" HUM TGT: TYPE CIVILIAN: "1 CIVILIAN" HUM TGT: NUMBER1: "1 CIVILIAN" HUM TGT: FOREIGN NATION HUM TGT: EFFECT OF INCIDENTDEATH: "1 CIVILIAN" HUM TGT: TOTAL NUMBER On October 30, 1989, one civilian was killed in a reported FMLN attack in El Salvador.
18
Subcategorization frames 1.I ate 2.I ate a turkey sandwich 3.I ate a turkey sandwich at my desk 4.I ate at my desk 5.I ate lunch 6.I ate a turkey sandwich for lunch 7.I ate a turkey sandwich for lunch at my desk - no fixed “arity” (problem for FOPC)
19
One possible solution 1.Eating1 (Speaker) 2.Eating2 (Speaker, TurkeySandwich) 3.Eating3 (Speaker, TurkeySandwich, Desk) 4.Eating4 (Speaker, Desk) 5.Eating5 (Speaker, Lunch) 6.Eating6 (Speaker, TurkeySandwich, Lunch) 7.Eating7 (Speaker, TurkeySandwich, Lunch, Desk) Meaning postulates are used to tie semantics of predicates: w,x,y,z: Eating7(w,x,y,z) ⇒ Eating6(w,x,y) Scalability issues again!
20
Another solution - Say that everything is a special case of Eating7 with some arguments unspecified: ∃ w,x,y Eating (Speaker,w,x,y) - Two problems again: -Too many commitments (e.g., no eating except at meals: lunch, dinner, etc.) -No way to individuate events: ∃ w,x Eating (Speaker,w,x,Desk) ∃ w,y Eating (Speaker,w,Lunch,y) – cannot combine into ∃ w Eating (Speaker,w,Lunch,Desk)
21
Reification ∃ w: Isa(w,Eating) ∧ Eater(w,Speaker) ∧ Eaten(w,TurkeySandwich) – equivalent to sentence 5. Reification: –No need to specify fixed number of arguments for a given surface predicate –No more roles are postulated than mentioned in the input –No need for meaning postulates to specify logical connections among closely related examples
22
Representing time 1.I arrived in New York 2.I am arriving in New York 3.I will arrive in New York ∃ w: Isa(w,Arriving) ∧ Arriver(w,Speaker) ∧ Destination(w,NewYork)
23
Representing time ∃ i,e,w,t: Isa(w,Arriving) ∧ Arriver(w,Speaker) ∧ Destination(w,NewYork) ∧ IntervalOf(w,i) ∧ EndPoint(I,e) ∧ Precedes (e,Now) ∃ i,e,w,t: Isa(w,Arriving) ∧ Arriver(w,Speaker) ∧ Destination(w,NewYork) ∧ IntervalOf(w,i) ∧ MemberOf(i,Now) ∃ i,e,w,t: Isa(w,Arriving) ∧ Arriver(w,Speaker) ∧ Destination(w,NewYork) ∧ IntervalOf(w,i) ∧ StartPoint(i,s) ∧ Precedes (Now,s)
24
Representing time We fly from San Francisco to Boston at 10. Flight 1390 will be at the gate an hour now. –Use of tenses Flight 1902 arrived late. Flight 1902 had arrived late. –“similar” tenses When Mary’s flight departed, I ate lunch When Mary’s flight departed, I had eaten lunch –reference point
25
Aspect Stative: I know my departure gate Activity: John is flying no particular end point Accomplishment: Sally booked her flight natural end point and result in a particular state Achievement: She found her gate Figuring out statives: * I am needing the cheapest fare. * I am wanting to go today. * Need the cheapest fare!
26
Representing beliefs Want, believe, imagine, know - all introduce hypothetical worlds I believe that Mary ate British food. Reified example: –∃ u,v: Isa(u,Believing) ∧ Isa(v,Eating) ∧ Believer (u,Speaker) ∧ BelievedProp(u,v) ∧ Eater(v,Mary) ∧ Eaten(v,BritishFood) However this implies also: –∃ u,v: Isa(v,Eating) ∧ Eater(v,Mary) ∧ Eaten(v,BritishFood) Modal operators: –Believing(Speaker,Eating(Mary,BritishFood)) - not FOPC! – predicates in FOPC hold between objects, not between relations. –Believes(Speaker, ∃ v: ISA(v,Eating) ∧ Eater(v,Mary) ∧ Eaten(v,BritishFood))
27
Modal operators Beliefs Knowledge Assertions Issues: If you are interested in baseball, the Red Sox are playing tonight.
28
Examples from Russell&Norvig (2) 7.3. p.214 One more outburst like that and you'll be in comptempt of court. Annie Hall is on TV tonight if you are interested. Either the Red Sox win or I am out ten dollars. The special this morning is ham and eggs. Maybe I will come to the party and maybe I won't. Well, I like Sandy and I don't like Sandy.
29
Readings for next time J&M Chapters 18, 19
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.