Download presentation
Presentation is loading. Please wait.
1
Towards a superstatistical SU2 Yang-Mills eos Tamás S. Bíró (KFKI RMKI Budapest / BME) and Zsolt Schram (DTP University of Debrecen) 1. Superstatistics: Euler-Gamma T 2. Monte Carlo with random spacing 3. Ideal gas limit, effective action 4. First numerical results towards SU2 eos Dense Matter 2010, 5-10. 04. 2010, Stellenbosch, South-Africa
2
Entropy formulas, distributions
3
Laws of thermodynamics 0. Equilibrium temperature ; entanglement 1.T dY(S) = dX(E) + p dU(V) - µ dZ(N) 2. dS ≥ 0 3. S = 0 at T = 0 4. thermodynamical limit: associative composition rule
4
Example: Gibbs-Boltzmann
5
Example: Tsallis
6
Example: Kaniadakis
7
Compisition in small steps: asymptotic rule
8
3. Possible causes for non-additivity a.Long range interaction energy not add. b.Long range correlation entropy not add. c.Example: kinetic energy composition rule for massless partons with E - dependent interaction Our view to the forest is blocked by single trees
9
Superstatistics
10
a.Kinetic simulation (NEBE) b.Monte Carlo simulation c.Superstatistics: effective partition function
11
POWER _LAW TAILED canonical distribution Interpretations: fluctuating temperature, (Wilk-Wlodarczyk) energy imbalance, (Rafelski) multiplicative + additive noise, (Tsallis, Biró-Jakovác) finite step CLT (Beck – Cohen) This equals to Euler-Gamma distributed Gibbs factors: q = 1 + 1 / c
12
max: 1 – 1/c, mean: 1, spread: 1 / √ c Gamma distribution
13
Gamma deviate random spacing asymmetry A = DU dt w (t) e t A(U) ∫ ∫ -S(t,U) c DU dt w (t) e ∫ ∫ -S(t,U) c v Expectation values of observables: t = a / a = T / T asymmetry parameter ts Action: S(t,U) = a(U) t + b(U) / t av
14
1. Effective action method A = DU e A(U) ∫ -S (U,v) DU e Effective action calculation: eff ∫ -S (U,0) eff v=0: Polyakov line, v=1: ss Plaquettes, v=-1: ts Plaquettes
15
Lattice theory: effective action S = dt t e Evaluation methods: eff ∫ ∞ c c G (c) -(a+c)t - b/t - ln c+v-1 0 exact analytical saddle point numerical (Gauss-Laguerre) space-space: a = ∑ (1 – Re tr P ss) space-time: b = ∑ (1 – Re tr P ts) Plaquette sums:
16
Lattice theory: effective action Asymptotics: eff c c G (c) - ln large a,b finite c: 2 ab large a,b,c and a-b << (a+b):a + b () b a+c () (c+v)/2 2K (2 b(a+c) ) c+v S =
17
2. Numerical approach Euler Gamma distribution Near to standard: c = 1024.0 Smaller values of c (13.5, 5.5) Asymmetry parameter in MC Action difference and sum -> eos Other quantities
19
Test of Gamma deviates
20
Lattice spacing asymmetry
21
Asymmetry parameter for c = 5.5
23
Euler-Gamma random deviates statistics
24
Equipartition of action
25
Compare action equipartition
26
Electric / Magnetic ratio
27
Random deviate spacing per link update
28
Action difference at c = 1024
29
Action difference at several c
30
Zsolt Schram, Debrecen
31
Ideal Tsallis-Bose gas For c = 5.5 we have 1 / a = 4.5 and e ≈ 4 e_0
32
Action sum at c = 1024
33
Action sum at several c-s
34
Wilson Loops at c = 1024
35
Creutz Ratios at c = 1024
36
Re Polyakov Loop
37
Composition rule entropy Power-law not exponential Superstatistics Tsallis-Bose id.gas eos SU2 YM Monte Carlo eos
38
Composition rule entropy formula Power-law (not exponential) Superstatistics (Euler-Gamma) Tsallis-Bose id.gas eos (SB const.) Towards SU2 YM Monte Carlo eos: RND asymmetry equipartition interaction measure
39
hcbm.kfki.hu Aug. 15-20. 2010 Hot and Cold Baryonic Matter
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.