Download presentation
Presentation is loading. Please wait.
1
מבוא מורחב למדעי המחשב בשפת Scheme תרגול 7
2
Outline Symbols Data Directed Programming, Message Passing
3
quote Number: does nothing (eq? '5 5) => #t Name: creates a symbol 'a = (quote a) => a Parenthesis: creates a list and recursively quotes '(a b c) = (list 'a 'b 'c) = = (list (quote a) (quote b) (quote c)) => (a b c)
4
quote 'a => a (symbol? 'a) => #t (pair? 'a) => #f ''a => 'a (symbol? ''a) => #f (pair? ''a) => #t (car ''a) => quote (cdr ''a) => (a) ''''a => '''a (car ''''a) => quote (cdr ''''a) => (''a)
5
eq? vs. equal? (symbols) (eq? ‘a ‘a) (equal? ‘a ‘a) (define x ‘a) (define y ‘a) (eq? x y) (equal? x y)
6
(eq? (list 1 2 3) (list 1 2 3)) (equal? (list 1 2 3) (list 1 2 3)) (equal? (list (list (list 1) 2) (list 1)) (list (list (list 1) 2) (list 1))) (define x (list 1 2 3)) (define y (list 1 2 3)) (eq? x y) (define z y) (eq? z y) (eq? x z) eq? vs. equal? (symbols)
7
Data directed programming Message passing Section 2.4, pages 169-187 2.5.1,2.5.2 pages 187-197 (but with a different example)
8
8 Multiple Representations of Abstract Data Package for handling geometrical figures Each figure has a unique data representation Support of Generic Operations on figures, such as: Compute figure area Compute figure circumference Print figure parameters, etc. Example: geometrical figures
9
9 Implementation #1: tagged data Main idea: add a tag (symbol) to every figure instance Generic procedures dispatch on parameter type The system is not additive/modular ( define (area fig) (cond ((eq? 'rectange (type-tag fig)) (area-rect (contents fig))) ((eq? 'circle (type-tag fig)) (area-circle (contents fig)..)) The generic procedures must know about all types. If we want to add a new type we need to add it to all of the operations, be careful with name clashes.
10
10 Implementation #2: data directed programming Generic operations circumference area fig-display types Circle Rectangle circumference-circle area-circle fig-display-circle circumference-rect area-rect fig-display-rect Square circumference-square area-square fig-display-square Main idea: work with a table. Keep a pointer to the right procedure to call in the table, keyed by the operation/type combination
11
11 Circle implementation (define (install-circle-package) ;; Implementation (define PI 3.1415926) (define (radius circle) (car circle)) (define (circumference circle) (* 2 PI (radius circle))) (define (area circle) (let ((r (radius circle)) (* PI r r))) (define (fig-display circle) (my-display “Circle: radius”, (radius circle))) (define (make-circle radius) (attach-tag 'circle (list radius))) ;; I nterface to the rest of the system (put 'circumference 'circle circumference) (put 'area 'circle area) (put 'fig-display 'circle fig-display) (put 'make-fig 'circle make-circle) 'done)
12
12 Generic procedures (define (circumference fig) (apply-generic 'circumference fig)) (define (area fig) (apply-generic 'area fig)) (define (fig-display fig) (apply-generic 'fig-display fig)) (define (apply-generic op arg) (let ((tag (type-tag arg))) (let ((proc (get op tag))) (if proc (proc (contents arg)) (error "No operation for these types -- APPLY-GENERIC" (list op tag))))))
13
13 Summary: Data Directed programming Data Directed programming is more modular: 1.To add a representation, we only need to write a package for the new representation without changing generic procedures. (Execute the install procedure once). 2.Changes are local. 3.No name clashes. install-polar-package install-rectangular-package.. Can be extended to support multi-parameter generic operations.
14
14 add sub mul div Programs that use numbers Generic Arithmetic System Generic arithmetic package List structure and primitive machine arithmetic Rational arithmetic Ordinary arithmetic Polynomial arithmetic add-rat sub-rat mul-rat div-rat +,-,*,/add-poly sub-poly mul-poly div-poly
15
15 Rational numbers Constructor (define (make-rat n d) (let ((g (gcd n d))) (cons (/ n g) (/ d g)))) Selectors (define (numer x) (car x)) (define (denom x) (cdr x))
16
16 Rational Operators (define (add-rat x y) (make-rat (+ (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (mul-rat x y) (make-rat (* (numer x) (numer y)) (* (denom x) (denom y))))
17
17 Rational Package (define (install-rational-package) ;; internal procedures (define (numer x) (car x)) (define (denom x) (cdr x)) (define (make-rat n d)...) (define (add-rat x y)...) (define (mul-rat x y)...)... ;; interface to rest of the system (define (tag x) (attach-tag 'rational x)) (put 'add '(rational rational) (lambda (x y) (tag (add-rat x y)))) (put 'mul '(rational rational) (lambda (x y) (tag (mul-rat x y))))... (put 'make 'rational (lambda (n d) (tag (make-rat n d)))) 'done) (define (make-rational n d) ((get 'make 'rational) n d))
18
18 Scheme Numbers Package ;; ordinary numbers package (define (install-scheme-number-package) ;; interface to rest of the system (define (tag x) (attach-tag ’scheme-number x)) (put 'add '(scheme-number scheme-number) (lambda (x y) (tag (+ x y)))) (put 'mul '(scheme-number scheme-number) (lambda (x y) (tag (* x y))))... (put 'make 'scheme-number (lambda (x) (tag x))) 'done) (define (make-scheme-number n) ((get 'make 'scheme-number) n))
19
19 Polynomials in x in y in x coefficients are polynomials in y complex coefficients in x rational coefficients polynomial coefficients
20
20 Representation Dense (1 2 0 3 –2 –5) Sparse ((100 1) (2 3) (0 5)) Implementation (make-polynomial 'x '((100 1) (2 3) (0 5))) =>(polynomial x (100 1) (2 3) (0 5))
21
21 Data Abstraction Constructor (define (make-poly variable term-list) (cons variable term-list)) Selectors (define (variable p) (car p)) (define (term-list p) (cdr p)) Predicates (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2)))
22
22 Polynomial Addition (define (add-poly p1 p2) (if (same-variable? (variable p1) (variable p2)) (make-poly (variable p1) (add-terms (term-list p1) (term-list p2))) (error "Polys not in same var, add-poly" (list p1 p2))))
23
23 Polynomial Multiplication (define (mul-poly p1 p2) (if (same-variable? (variable p1) (variable p2)) (make-poly (variable p1) (mul-terms (term-list p1) (term-list p2))) (error "Polys not in same var, mul-poly" (list p1 p2))))
24
24 Term list – Data Abstraction Constructors (define (adjoin-term term term-list) (if (=zero? (coeff term)) term-list (cons term term-list))) (define (the-empty-termlist) '()) Selectors (define (first-term term-list) (car term-list)) (define (rest-terms term-list) (cdr term-list)) Predicate (define (empty-termlist? term-list) (null? term-list))
25
25 Term – Data Abstraction Constructor (define (make-term order coeff) (list order coeff)) Selectors (define (order term) (car term)) (define (coeff term) (cadr term))
26
26 Term-list Addition (define (add-terms L1 L2) (cond ((empty-termlist? L1) L2) ((empty-termlist? L2) L1) (else (let ((t1 (first-term L1)) (t2 (first-term L2))) (cond ((> (order t1) (order t2)) (adjoin-term t1 (add-terms (rest-terms L1) L2))) ((< (order t1) (order t2)) (adjoin-term t2 (add-terms L1 (rest-terms L2)))) (else (adjoin-term (make-term (order t1) (add (coeff t1) (coeff t2))) (add-terms (rest-terms L1) (rest-terms L2)))))))))
27
27 Term-list Multiplication (define (mul-terms L1 L2) (if (empty-termlist? L1) (the-empty-termlist) (add-terms (mul-term-by-all-terms (first-term L1) L2) (mul-terms (rest-terms L1) L2))))
28
28 Term-list Multiplication (define (mul-term-by-all-terms t1 L) (if (empty-termlist? L) (the-empty-termlist) (let ((t2 (first-term L))) (adjoin-term (make-term (+ (order t1) (order t2)) (mul (coeff t1) (coeff t2))) (mul-term-by-all-terms t1 (rest-terms L))))))
29
29 Polynomial package (define (install-polynomial-package) ;; internal procedures (define (make-poly variable term-list) (cons variable term-list)) (define (variable p) (car p)) (define (term-list p) (cdr p)) (define (variable? x)...) (define (same-variable? v1 v2)...) (define (adjoin-term term term-list)...)....... (define (coeff term)...) (define (add-poly p1 p2)...) (define (mul-poly p1 p2)...) representation of poly representation of terms and term lists
30
30 Polynomial package (cont.) ;; interface to rest of the system (define (tag p) (attach-tag 'polynomial p)) (put 'add '(polynomial polynomial) (lambda (p1 p2) (tag (add-poly p1 p2)))) (put 'mul '(polynomial polynomial) (lambda (p1 p2) (tag (mul-poly p1 p2)))) (put 'make 'polynomial (lambda (var terms) (tag (make-poly var terms)))) 'done) (define (make-polynomial var terms) ((get 'make 'polynomial) var terms))
31
31 Applications Operators: (define (add obj1 obj2) (apply-generic ‘add obj1 obj2)) (define (mul obj1 obj2) (apply-generic ‘mul obj1 obj2)) (define (=zero obj) (apply-generic ‘=zero obj)) Types: rational numbers scheme-numbers polynomials
32
32 How does it work? (add obj1 obj2) (apply-generic ‘add obj1 obj2) proc = (get ‘add (type-of-obj1 type-of-obj2)) Apply proc on contents of objects Returns a data type with an appropriate tag Same for mul and =zero constructor procedures work different (why?) (make-rat num den) constructor = (get ‘make ‘rat) Apply constructor on num and den Returns an abstract data type with a ‘rat tag
33
33 Apply Generic - Class Version (define (apply-generic op arg) (let ((type (type-tag arg))) (let ((proc (get op type))) (if proc (proc (contents arg)) (error "No method for these types -- APPLY-GENERIC" (list op type))))))
34
34 Apply Generic - Book version (define (apply-generic op. args) (let ((type-tags (map type-tag args))) (let ((proc (get op type-tags))) (if proc (apply proc (map contents args)) (error "No method for these types -- APPLY-GENERIC" (list op type-tags))))))
35
35 Do we really need to construct numbers? Replace (define (type-tag datum) (car datum)) With (define (type-tag datum) (cond ((pair? datum) (car datum)) ((number? datum) 'scheme-number) (else (error "Bad tagged datum -- TYPE-TAG" datum)))) Replace (define (contents datum) (cdr datum)) With (define (contents datum) (cond ((pair? datum) (cdr datum)) ((number? datum) datum) (else (error "Bad tagged datum -- TYPE-TAG" datum))))
36
36 Constructing numbers (cont.) Replace (inside number package) (define (tag x) (attach-tag ’scheme-number x)) With (define (tag x) x) Alternative: Replace (define (attach-tag type-tag contents) (cons type-tag contents)) With (define (attach-tag type-tag contents) (if (eq? type-tag ‘scheme-number) contents (cons type-tag contents)))
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.