Download presentation
1
Chapter 7 Sampling Distribution
抽樣分配
2
Samples and sampling error
Sample vs. population z-score 來描述sample 分佈 Sampling error: 樣本統計量 (sample statistics) 與母體參數值 (population parameters)的差異 Fact 1: 利用樣本去推知母體 Fact 2: different samples 產生different results Question: 如何知道樣本的結果可以正確的描述母體的特徵?
3
The distribution of samples means
Sampling distribution of Sampling distribution 抽樣分配 在母體中重複抽取固定大小的隨機樣本,所有隨機樣本的統計值的機率分配稱為抽樣分配
4
= 100 etc. for all possible samples of a given N from the population
5
Sampling Distribution 定理
當母體為normal distribution, 我們重複抽取固定大小的隨機樣本時, 則此一抽樣分配會趨近normal distribution 並且有一平均值及標準差
6
以五名學生的考試成績(91, 92, 93, 94,95)為母體, 母體的mean 為 93。試比較從5名學生(母體)中隨機抽取2位學生作為樣本(n=2)和隨機抽取3位學生作為樣本之抽樣分配
7
When n=2 sample Sample mean 91,92 91.5 92,94 93 91,93 92 92,95 93.5 91,94 92.5 93,94 91,95 93,95 94 92,93 94,95 94.5
8
When n=3 sample Sample mean 91,92,93 92 91,94,95 93.33 91,92,94 92.33 92,93,94 93 91,92,95 92.67 92,93,95 91,93,94 92,94,95 93.67 91,93,95 93,94,95 94
9
Distribution of sample mean 特質
P.162 example Distribution of sample mean 特質 所有的sample means會集中在 分佈的形狀趨近normal 可利用z-score查表得知機率面績,以了解隨意抽到某個sample mean的機率為何
10
Central Limit Theorem 中央極限定理
無論母體分配是否為normal distribution, 當我們隨機重複抽取固定大小的樣本時,只要樣本的N夠大,則此一抽樣分配也會趨近normal distribution with a mean of and a standard deviation of If n is sufficiently large ~ N(, 2/n) How large? Variance
11
何時適用中央極限定理 不知母體分佈是否為常態
12
Sampling distribution of sample mean
Mean of the sampling distribution = St.D. of the sampling distribution (Standard Error, ) = Standard error (樣本平均數的標準誤)告訴我們樣本平均數對母體平均數的估計有多準確 N, Standard Error
13
Exercise 假設王品牛排每位顧客等待主菜的時間呈常態分配,平均等待時間為10分鐘,標準差為2分鐘。某餐旅研究生作服務品質調查,隨機抽選16名顧各瞭解其等待時間,試問該16名顧客平均等待時間超過11分鐘的機率為何?
14
Difference b/w standard deviation and standard error
When n=1 = =
15
Sampling error Standard error Distance b/w a single and
Averaged distance b/w any given and 小standard error 代表樣本與母體無太大差異 可以幫助我們了解樣本的結果是happened by chance or greater than chance
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.