Download presentation
Presentation is loading. Please wait.
1
Non-Symmetric Microstructured Optical Fibres
2
Introduction Information Age – Computers, CD’s, Internet Need a way to transmit data – Optic Fibres Other uses – medicine, surveillance
3
The story so far… Currently use conventional optic fibres Began in the 60’s, first used in the 80’s So far, so good Moore’s Law + Economics = Need for better fibres
4
Problems… Losses – 0.18dB/km at best = lose 4% of power/km Restricted wavelength Dispersion
5
Microstructured Optical Fibres(MOFs) First thought of 10 years ago Fibre + air holes = MOF Lower losses Much greater versatility
6
Simple Concepts Light is contained in the fibre by the holes Light propagates along many modes Intermodal Dispersion - coupling between modes Only want single mode fibres (fundamental mode)
7
Polarisation Mode Dispersion Fundamental mode – two polarisations Coupling between different polarisations Theory – degenerate modes, no coupling Heat, stress, manufacture = imperfections Reality – non-degenerate modes, coupling
8
Solution? Create a non-symmetric fibre – birefringence Fundamental mode no longer degenerate Use only one polarisation – eliminate polarisation mode dispersion
9
My Experiment Investigate modes in non-symmetric MOFs Computer simulations, using programs written by Boris Kuhlmey Input parameters and structure Program gives information about modes
10
Basic parameters Used three rings of holes – six holes in the first ring, 12 in the second, 18 in the third Kept hole size constant at 1.30 m Kept wavelength constant at 1.55 m Kept fibre size and refractive indices constant
11
Ellipses Used Ellipses, varying eccentricity while keeping the semi-major axis constant (length a) Eccentricity = e = (1-b 2 /a 2 ) 0.5 Put cylinders equally along the arc
12
Problems/Constraints No formula for arc length of an ellipse – numerical integration Can’t have eccentricity too close to 1 – cylinders overlap, results inaccurate Took 0 =< e < 0.77
13
Input Data
14
The Fibre
15
Output
16
Output (continued) The program generates two modes: Mode 1 Mode 2 The field shown is the Poynting Vector in the z-direction
17
The difference? The same two modes: Mode 1 Mode 2 The field shown is the E field in the x-direction
18
Important Numbers Refractive Index = = r + i i Real Component – “Normal” refractive index e.g. Snell’s Law Imaginary Component – Loss of the fibre Degree of Birefringence – B m = | r,x - r,y | B m > 10 -4 = good fibre
19
Losses
20
Results
21
More Results
22
Trends?
23
Summary Losses decrease with eccentricity, with i,x less than i,y - can create Real part of refractive index decreases with eccentricity, with r,y less than r,x B m increases with eccentricity according to a power law Can create highly birefringent fibres using this method
24
References Govind P. Agrawal, Fiber-Optic Communication Systems (Wiley and Sons, New York, 2002) Thomas White, “Microstructured Optical Fibres – a Multipole Formulation”, University of Sydney, October 2000 Boris T. Kuhlmey, “Theoretical and Numerical Investigation of the Physics of Microstructured Optical Fibres”, University of Sydney, 2003 Boris T. Kuhlmey, Ross C. McPhedran, C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers”, 2002
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.