Download presentation
Presentation is loading. Please wait.
1
CS 245Notes 091 CS 245: Database System Principles Notes 09: Concurrency Control Hector Garcia-Molina
2
CS 245Notes 092 Chapter 18 [18] Concurrency Control T1T2…Tn DB (consistency constraints)
3
CS 245Notes 093 Example: T1:Read(A)T2:Read(A) A A+100A A 2Write(A)Read(B) B B+100B B 2Write(B) Constraint: A=B
4
CS 245Notes 094 Schedule A T1T2 Read(A); A A+100 Write(A); Read(B); B B+100; Write(B); Read(A);A A 2; Write(A); Read(B);B B 2; Write(B);
5
CS 245Notes 095 Schedule A T1T2 Read(A); A A+100 Write(A); Read(B); B B+100; Write(B); Read(A);A A 2; Write(A); Read(B);B B 2; Write(B); AB25 125 250 250
6
CS 245Notes 096 Schedule B T1T2 Read(A);A A 2; Write(A); Read(B);B B 2; Write(B); Read(A); A A+100 Write(A); Read(B); B B+100; Write(B);
7
CS 245Notes 097 Schedule B T1T2 Read(A);A A 2; Write(A); Read(B);B B 2; Write(B); Read(A); A A+100 Write(A); Read(B); B B+100; Write(B); AB25 50 150 150
8
CS 245Notes 098 Schedule C T1T2 Read(A); A A+100 Write(A); Read(A);A A 2; Write(A); Read(B); B B+100; Write(B); Read(B);B B 2; Write(B);
9
CS 245Notes 099 Schedule C T1T2 Read(A); A A+100 Write(A); Read(A);A A 2; Write(A); Read(B); B B+100; Write(B); Read(B);B B 2; Write(B); AB25 125 250 125 250250
10
CS 245Notes 0910 Schedule D T1T2 Read(A); A A+100 Write(A); Read(A);A A 2; Write(A); Read(B);B B 2; Write(B); Read(B); B B+100; Write(B);
11
CS 245Notes 0911 Schedule D T1T2 Read(A); A A+100 Write(A); Read(A);A A 2; Write(A); Read(B);B B 2; Write(B); Read(B); B B+100; Write(B); AB25 125 250 50 150 250150
12
CS 245Notes 0912 Schedule E T1T2’ Read(A); A A+100 Write(A); Read(A);A A 1; Write(A); Read(B);B B 1; Write(B); Read(B); B B+100; Write(B); Same as Schedule D but with new T2’
13
CS 245Notes 0913 Schedule E T1T2’ Read(A); A A+100 Write(A); Read(A);A A 1; Write(A); Read(B);B B 1; Write(B); Read(B); B B+100; Write(B); AB25 125 25 125125 Same as Schedule D but with new T2’
14
CS 245Notes 0914 Want schedules that are “good”, regardless of –initial state and –transaction semantics Only look at order of read and writes Example: Sc=r 1 (A)w 1 (A)r 2 (A)w 2 (A)r 1 (B)w 1 (B)r 2 (B)w 2 (B)
15
CS 245Notes 0915 Sc’=r 1 (A)w 1 (A) r 1 (B)w 1 (B)r 2 (A)w 2 (A)r 2 (B)w 2 (B) T 1 T 2 Example: Sc=r 1 (A)w 1 (A)r 2 (A)w 2 (A)r 1 (B)w 1 (B)r 2 (B)w 2 (B)
16
CS 245Notes 0916 The Transaction Game
17
CS 245Notes 0917
18
The Transaction Game CS 245Notes 0918 can move column until column hits something
19
CS 245Notes 0919 move
20
Schedule D CS 245Notes 0920
21
CS 245Notes 0921 However, for Sd: Sd=r 1 (A)w 1 (A)r 2 (A)w 2 (A) r 2 (B)w 2 (B)r 1 (B)w 1 (B) as a matter of fact, T 2 must precede T 1 in any equivalent schedule, i.e., T 2 T 1
22
CS 245Notes 0922 T 1 T 2 Sd cannot be rearranged into a serial schedule Sd is not “equivalent” to any serial schedule Sd is “bad” T 2 T 1 Also, T 1 T 2
23
CS 245Notes 0923 Returning to Sc Sc=r 1 (A)w 1 (A)r 2 (A)w 2 (A)r 1 (B)w 1 (B)r 2 (B)w 2 (B) T 1 T 2 T 1 T 2
24
CS 245Notes 0924 Returning to Sc Sc=r 1 (A)w 1 (A)r 2 (A)w 2 (A)r 1 (B)w 1 (B)r 2 (B)w 2 (B) T 1 T 2 T 1 T 2 no cycles Sc is “equivalent” to a serial schedule (in this case T 1,T 2 )
25
CS 245Notes 0925 Concepts Transaction: sequence of r i (x), w i (x) actions Conflicting actions: r 1(A) w 2(A) w 1(A) w 2(A) r 1(A) w 2(A) Schedule: represents chronological order in which actions are executed Serial schedule: no interleaving of actions or transactions
26
CS 245Notes 0926 Is it OK to model reads & writes as occurring at a single point in time in a schedule? S=… r 1 (x) … w 2 (b) …
27
CS 245Notes 0927 What about conflicting, concurrent actions on same object? start r 1 (A)end r 1 (A) start w 2 (A) end w 2 (A) time
28
CS 245Notes 0928 Assume equivalent to either r 1 (A) w 2 (A) orw 2 (A) r 1 (A) low level synchronization mechanism Assumption called “atomic actions” What about conflicting, concurrent actions on same object? start r 1 (A)end r 1 (A) start w 2 (A) end w 2 (A) time
29
CS 245Notes 0929 Definition S 1, S 2 are conflict equivalent schedules if S 1 can be transformed into S 2 by a series of swaps on non-conflicting actions.
30
CS 245Notes 0930 Definition A schedule is conflict serializable if it is conflict equivalent to some serial schedule.
31
CS 245Notes 0931 Nodes: transactions in S Arcs: Ti Tj whenever - p i (A), q j (A) are actions in S - p i (A) < S q j (A) - at least one of p i, q j is a write Precedence graph P(S) (S is schedule )
32
CS 245Notes 0932 Exercise: What is P(S) for S = w 3 (A) w 2 (C) r 1 (A) w 1 (B) r 1 (C) w 2 (A) r 4 (A) w 4 (D) Is S serializable?
33
CS 245Notes 0933 Another Exercise: What is P(S) for S = w 1 (A) r 2 (A) r 3 (A) w 4 (A) ?
34
CS 245Notes 0934 Lemma S 1, S 2 conflict equivalent P(S 1 )=P(S 2 )
35
CS 245Notes 0935 Lemma S 1, S 2 conflict equivalent P(S 1 )=P(S 2 ) Proof: Assume P(S 1 ) P(S 2 ) T i : T i T j in S 1 and not in S 2 S 1 = …p i (A)... q j (A)… p i, q j S 2 = …q j (A)…p i (A)... conflict S 1, S 2 not conflict equivalent
36
CS 245Notes 0936 Note: P(S 1 )=P(S 2 ) S 1, S 2 conflict equivalent
37
CS 245Notes 0937 Note: P(S 1 )=P(S 2 ) S 1, S 2 conflict equivalent Counter example: S 1 =w 1 (A) r 2 (A) w 2 (B) r 1 (B) S 2 =r 2 (A) w 1 (A) r 1 (B) w 2 (B)
38
CS 245Notes 0938 Theorem P(S 1 ) acyclic S 1 conflict serializable ( ) Assume S 1 is conflict serializable S s : S s, S 1 conflict equivalent P(S s ) = P(S 1 ) P(S 1 ) acyclic since P(S s ) is acyclic
39
CS 245Notes 0939 ( ) Assume P(S 1 ) is acyclic Transform S 1 as follows: (1) Take T 1 to be transaction with no incident arcs (2) Move all T 1 actions to the front S 1 = ……. q j (A)……. p 1 (A)….. (3) we now have S 1 = (4) repeat above steps to serialize rest! T 1 T 2 T 3 T 4 Theorem P(S 1 ) acyclic S 1 conflict serializable
40
CS 245Notes 0940 How to enforce serializable schedules? Option 1: run system, recording P(S); at end of day, check for P(S) cycles and declare if execution was good
41
CS 245Notes 0941 Option 2: prevent P(S) cycles from occurring T 1 T 2 …..T n Scheduler DB How to enforce serializable schedules?
42
CS 245Notes 0942 A locking protocol Two new actions: lock (exclusive):l i (A) unlock:u i (A) scheduler T 1 T 2 lock table
43
CS 245Notes 0943 Rule #1: Well-formed transactions T i : … l i (A) … p i (A) … u i (A)...
44
CS 245Notes 0944 Rule #2 Legal scheduler S = …….. l i (A) ………... u i (A) ……... no l j (A)
45
CS 245Notes 0945 What schedules are legal? What transactions are well-formed? S1 = l 1 (A)l 1 (B)r 1 (A)w 1 (B)l 2 (B)u 1 (A)u 1 (B) r 2 (B)w 2 (B)u 2 (B)l 3 (B)r 3 (B)u 3 (B) S2 = l 1 (A)r 1 (A)w 1 (B)u 1 (A)u 1 (B) l 2 (B)r 2 (B)w 2 (B)l 3 (B)r 3 (B)u 3 (B) S3 = l 1 (A)r 1 (A)u 1 (A)l 1 (B)w 1 (B)u 1 (B) l 2 (B)r 2 (B)w 2 (B)u 2 (B)l 3 (B)r 3 (B)u 3 (B) Exercise:
46
CS 245Notes 0946 What schedules are legal? What transactions are well-formed? S1 = l 1 (A)l 1 (B)r 1 (A)w 1 (B)l 2 (B)u 1 (A)u 1 (B) r 2 (B)w 2 (B)u 2 (B)l 3 (B)r 3 (B)u 3 (B) S2 = l 1 (A)r 1 (A)w 1 (B)u 1 (A)u 1 (B) l 2 (B)r 2 (B)w 2 (B)l 3 (B)r 3 (B)u 3 (B) u 2 (B)? S3 = l 1 (A)r 1 (A)u 1 (A)l 1 (B)w 1 (B)u 1 (B) l 2 (B)r 2 (B)w 2 (B)u 2 (B)l 3 (B)r 3 (B)u 3 (B) Exercise:
47
CS 245Notes 0947 Schedule F T1 T2 l 1 (A);Read(A) A A+100;Write(A);u 1 (A) l 2 (A);Read(A) A Ax2;Write(A);u 2 (A) l 2 (B);Read(B) B Bx2;Write(B);u 2 (B) l 1 (B);Read(B) B B+100;Write(B);u 1 (B)
48
CS 245Notes 0948 Schedule F T1 T2 25 25 l 1 (A);Read(A) A A+100;Write(A);u 1 (A) 125 l 2 (A);Read(A) A Ax2;Write(A);u 2 (A) 250 l 2 (B);Read(B) B Bx2;Write(B);u 2 (B) 50 l 1 (B);Read(B) B B+100;Write(B);u 1 (B) 150 250 150 A B
49
CS 245Notes 0949 Rule #3 Two phase locking (2PL) for transactions T i = ……. l i (A) ………... u i (A) ……... no unlocks no locks
50
CS 245Notes 0950 # locks held by Ti Time Growing Shrinking Phase Phase
51
CS 245Notes 0951 Schedule G delayed
52
CS 245Notes 0952 Schedule G delayed
53
CS 245Notes 0953 Schedule G delayed
54
CS 245Notes 0954 Schedule H (T 2 reversed) delayed
55
CS 245Notes 0955 Assume deadlocked transactions are rolled back –They have no effect –They do not appear in schedule E.g., Schedule H = This space intentionally left blank!
56
CS 245Notes 0956 Next step: Show that rules #1,2,3 conflict- serializable schedules
57
CS 245Notes 0957 Conflict rules for l i (A), u i (A): l i (A), l j (A) conflict l i (A), u j (A) conflict Note: no conflict,,...
58
CS 245Notes 0958 Theorem Rules #1,2,3 conflict (2PL) serializable schedule
59
CS 245Notes 0959 Theorem Rules #1,2,3 conflict (2PL) serializable schedule To help in proof: Definition Shrink(Ti) = SH(Ti) = first unlock action of Ti
60
CS 245Notes 0960 Lemma Ti Tj in S SH(Ti) < S SH(Tj)
61
CS 245Notes 0961 Lemma Ti Tj in S SH(Ti) < S SH(Tj) Proof of lemma: Ti Tj means that S = … p i (A) … q j (A) …; p,q conflict By rules 1,2: S = … p i (A) … u i (A) … l j (A)... q j (A) …
62
CS 245Notes 0962 Lemma Ti Tj in S SH(Ti) < S SH(Tj) Proof of lemma: Ti Tj means that S = … p i (A) … q j (A) …; p,q conflict By rules 1,2: S = … p i (A) … u i (A) … l j (A)... q j (A) … By rule 3: SH(Ti) SH(Tj) So, SH(Ti) < S SH(Tj)
63
CS 245Notes 0963 Proof: (1) Assume P(S) has cycle T 1 T 2 …. T n T 1 (2) By lemma: SH(T 1 ) < SH(T 2 ) <... < SH(T 1 ) (3) Impossible, so P(S) acyclic (4) S is conflict serializable Theorem Rules #1,2,3 conflict (2PL) serializable schedule
64
CS 245Notes 0964 2PL subset of Serializable 2PL Serializable
65
CS 245Notes 0965 S1: w1(x) w3(x) w2(y) w1(y) S1 cannot be achieved via 2PL: The lock by T1 for y must occur after w2(y), so the unlock by T1 for x must occur after this point (and before w1(x)). Thus, w3(x) cannot occur under 2PL where shown in S1 because T1 holds the x lock at that point. However, S1 is serializable (equivalent to T2, T1, T3).
66
CS 245Notes 0966 S C : w1(A) w2(A) w1(B) w2(B) If you need a bit more practice: Are our schedules S C and S D 2PL schedules? S D : w1(A) w2(A) w2(B) w1(B)
67
CS 245Notes 0967 Beyond this simple 2PL protocol, it is all a matter of improving performance and allowing more concurrency…. –Shared locks –Multiple granularity –Inserts, deletes and phantoms –Other types of C.C. mechanisms
68
CS 245Notes 0968 Shared locks So far: S =...l 1 (A) r 1 (A) u 1 (A) … l 2 (A) r 2 (A) u 2 (A) … Do not conflict
69
CS 245Notes 0969 Shared locks So far: S =...l 1 (A) r 1 (A) u 1 (A) … l 2 (A) r 2 (A) u 2 (A) … Do not conflict Instead: S=... ls 1 (A) r 1 (A) ls 2 (A) r 2 (A) …. us 1 (A) us 2 (A)
70
CS 245Notes 0970 Lock actions l-t i (A): lock A in t mode (t is S or X) u-t i (A): unlock t mode (t is S or X) Shorthand: u i (A): unlock whatever modes T i has locked A
71
CS 245Notes 0971 Rule #1 Well formed transactions T i =... l-S 1 (A) … r 1 (A) … u 1 (A) … T i =... l-X 1 (A) … w 1 (A) … u 1 (A) …
72
CS 245Notes 0972 What about transactions that read and write same object? Option 1: Request exclusive lock T i =...l-X 1 (A) … r 1 (A)... w 1 (A)... u(A) …
73
CS 245Notes 0973 Option 2: Upgrade (E.g., need to read, but don’t know if will write…) T i =... l-S 1 (A) … r 1 (A)... l-X 1 (A) …w 1 (A)...u(A)… Think of - Get 2nd lock on A, or - Drop S, get X lock What about transactions that read and write same object?
74
CS 245Notes 0974 Rule #2 Legal scheduler S =....l-S i (A) … … u i (A) … no l-X j (A) S =... l-X i (A) … … u i (A) … no l-X j (A) no l-S j (A)
75
CS 245Notes 0975 A way to summarize Rule #2 Compatibility matrix Comp S X S true false Xfalse false
76
CS 245Notes 0976 Rule # 3 2PL transactions No change except for upgrades: (I) If upgrade gets more locks (e.g., S {S, X}) then no change! (II) If upgrade releases read (shared) lock (e.g., S X) - can be allowed in growing phase
77
CS 245Notes 0977 Proof: similar to X locks case Detail: l-t i (A), l-r j (A) do not conflict if comp(t,r) l-t i (A), u-r j (A) do not conflict if comp(t,r) Theorem Rules 1,2,3 Conf.serializable for S/X locks schedules
78
CS 245Notes 0978 Lock types beyond S/X Examples: (1) increment lock (2) update lock
79
CS 245Notes 0979 Example (1): increment lock Atomic increment action: IN i (A) {Read(A); A A+k; Write(A)} IN i (A), IN j (A) do not conflict! A=7 A=5A=17 A=15 IN i (A) +2 IN j (A) +10 IN j (A) +2 IN i (A)
80
CS 245Notes 0980 CompSXI S X I
81
CS 245Notes 0981 CompSXI STFF XFFF IFFT
82
CS 245Notes 0982 Update locks
83
CS 245Notes 0983 Solution If T i wants to read A and knows it may later want to write A, it requests update lock (not shared)
84
CS 245Notes 0984 CompSXU S X U New request Lock already held in
85
CS 245Notes 0985 CompSXU STFT XFFF U TorF FF -> symmetric table? New request Lock already held in
86
CS 245Notes 0986 Note: object A may be locked in different modes at the same time... S 1 =...l-S 1 (A)…l-S 2 (A)…l-U 3 (A)… l-S 4 (A)…? l-U 4 (A)…?
87
CS 245Notes 0987 Note: object A may be locked in different modes at the same time... S 1 =...l-S 1 (A)…l-S 2 (A)…l-U 3 (A)… l-S 4 (A)…? l-U 4 (A)…? To grant a lock in mode t, mode t must be compatible with all currently held locks on object
88
CS 245Notes 0988 How does locking work in practice? Every system is different (E.g., may not even provide CONFLICT-SERIALIZABLE schedules) But here is one (simplified) way...
89
CS 245Notes 0989 (1) Don’t trust transactions to request/release locks (2) Hold all locks until transaction commits # locks time Sample Locking System:
90
CS 245Notes 0990 Ti Read(A),Write(B) l(A),Read(A),l(B),Write(B)… Read(A),Write(B) Scheduler, part I Scheduler, part II DB lock table
91
CS 245Notes 0991 Lock table Conceptually A B C ... Lock info for B Lock info for C If null, object is unlocked Every possible object
92
CS 245Notes 0992 But use hash table: A If object not found in hash table, it is unlocked Lock info for A A... H
93
CS 245Notes 0993 Lock info for A - example tran mode wait? Nxt T_link Object:A Group mode:U Waiting:yes List: T1 S no T2 U no T3X yes To other T3 records
94
CS 245Notes 0994 What are the objects we lock? ? Relation A Relation B... Tuple A Tuple B Tuple C... Disk block A Disk block B... DB
95
CS 245Notes 0995 Locking works in any case, but should we choose small or large objects?
96
CS 245Notes 0996 Locking works in any case, but should we choose small or large objects? If we lock large objects (e.g., Relations) –Need few locks –Low concurrency If we lock small objects (e.g., tuples,fields) –Need more locks –More concurrency
97
CS 245Notes 0997 We can have it both ways!! Ask any janitor to give you the solution... hall Stall 1Stall 2Stall 3Stall 4 restroom
98
CS 245Notes 0998 Example R1 t1t1 t2t2 t3t3 t4t4
99
CS 245Notes 0999 Example R1 t1t1 t2t2 t3t3 t4t4 T 1 (IS) T 1 (S)
100
CS 245Notes 09100 Example R1 t1t1 t2t2 t3t3 t4t4 T 1 (IS) T 1 (S), T 2 (S)
101
CS 245Notes 09101 Example (b) R1 t1t1 t2t2 t3t3 t4t4 T 1 (IS) T 1 (S)
102
CS 245Notes 09102 Example R1 t1t1 t2t2 t3t3 t4t4 T 1 (IS) T 1 (S), T 2 (IX) T 2 (IX)
103
CS 245Notes 09103 Multiple granularity CompRequestor IS IX S SIX X IS Holder IX S SIX X
104
CS 245Notes 09104 Multiple granularity CompRequestor IS IX S SIX X IS Holder IX S SIX X TTTTF F F F FFFFF FFFT FTFT FFTT
105
CS 245Notes 09105 ParentChild can belocked in IS IX S SIX X P C
106
CS 245Notes 09106 ParentChild can be locked locked inby same transaction in IS IX S SIX X P C IS, S IS, S, IX, X, SIX none X, IX, [SIX] none not necessary
107
CS 245Notes 09107 Rules (1) Follow multiple granularity comp function (2) Lock root of tree first, any mode (3) Node Q can be locked by Ti in S or IS only if parent(Q) locked by Ti in IX or IS (4) Node Q can be locked by Ti in X,SIX,IX only if parent(Q) locked by Ti in IX,SIX (5) Ti is two-phase (6) Ti can unlock node Q only if none of Q’s children are locked by Ti
108
CS 245Notes 09108 Exercise: Can T 2 access object f 2.2 in X mode? What locks will T 2 get? R1 t1t1 t2t2 t3t3 t4t4 T 1 (IX) f 2.1 f 2.2 f 3.1 f 3.2 T 1 (IX) T 1 (X)
109
CS 245Notes 09109 Exercise: Can T 2 access object f 2.2 in X mode? What locks will T 2 get? R1 t1t1 t2t2 t3t3 t4t4 T 1 (X) f 2.1 f 2.2 f 3.1 f 3.2 T 1 (IX)
110
CS 245Notes 09110 Exercise: Can T 2 access object f 3.1 in X mode? What locks will T 2 get? R1 t1t1 t2t2 t3t3 t4t4 T 1 (S) f 2.1 f 2.2 f 3.1 f 3.2 T 1 (IS)
111
CS 245Notes 09111 Exercise: Can T 2 access object f 2.2 in S mode? What locks will T 2 get? R1 t1t1 t2t2 t3t3 t4t4 T 1 (IX) f 2.1 f 2.2 f 3.1 f 3.2 T 1 (SIX) T 1 (X)
112
CS 245Notes 09112 Exercise: Can T 2 access object f 2.2 in X mode? What locks will T 2 get? R1 t1t1 t2t2 t3t3 t4t4 T 1 (IX) f 2.1 f 2.2 f 3.1 f 3.2 T 1 (SIX) T 1 (X)
113
CS 245Notes 09113 Insert + delete operations Insert A Z ...
114
CS 245Notes 09114 Modifications to locking rules: (1) Get exclusive lock on A before deleting A (2) At insert A operation by Ti, Ti is given exclusive lock on A
115
CS 245Notes 09115 Phantoms Still have a problem: Phantoms Example: relation R (E#,name,…) constraint: E# is key use tuple locking RE#Name…. o155Smith o275Jones
116
CS 245Notes 09116 T 1 : Insert into R T 2 : Insert into R T 1 T 2 S 1 (o 1 ) S 2 (o 1 ) S 1 (o 2 ) S 2 (o 2 ) Check Constraint Insert o 3 [12,Obama,..] Insert o 4 [12,Romney,..]...
117
CS 245Notes 09117 Solution Use multiple granularity tree Before insert of node Q, lock parent(Q) in X mode R1 t1t1 t2t2 t3t3
118
CS 245Notes 09118 Back to example T 1 : Insert T 2 : Insert T 1 T 2 X 1 (R) Check constraint Insert U 1 (R) X 2 (R) Check constraint Oops! e# = 12 already in R! delayed
119
CS 245Notes 09119 Instead of using R, can use index on R: Example: R Index 0<E#<100 Index 100<E#<200 E#=2E#=5 E#=107 E#=109...
120
CS 245Notes 09120 This approach can be generalized to multiple indexes...
121
CS 245Notes 09121 Next: Tree-based concurrency control Validation concurrency control
122
CS 245Notes 09122 Example A B C D EF all objects accessed through root, following pointers
123
CS 245Notes 09123 Example A B C D EF all objects accessed through root, following pointers T 1 lock
124
CS 245Notes 09124 Example A B C D EF all objects accessed through root, following pointers T 1 lock can we release A lock if we no longer need A??
125
CS 245Notes 09125 Idea: traverse like “Monkey Bars” A B C D EF
126
CS 245Notes 09126 Idea: traverse like “Monkey Bars” A B C D EF T 1 lock
127
CS 245Notes 09127 Idea: traverse like “Monkey Bars” A B C D EF T 1 lock
128
CS 245Notes 09128 Why does this work? Assume all T i start at root; exclusive lock T i T j T i locks root before T j Actually works if we don’t always start at root Root Q T i T j
129
CS 245Notes 09129 Rules: tree protocol (exclusive locks) (1) First lock by T i may be on any item (2) After that, item Q can be locked by T i only if parent(Q) locked by T i (3) Items may be unlocked at any time (4) After T i unlocks Q, it cannot relock Q
130
CS 245Notes 09130 Tree-like protocols are used typically for B-tree concurrency control E.g., during insert, do not release parent lock, until you are certain child does not have to split Root
131
CS 245Notes 09131 Tree Protocol with Shared Locks Rules for shared & exclusive locks? A B C D EF T 1 S lock(released) T 1 S lock (held) T 1 X lock (released) T 1 X lock (will get)
132
CS 245Notes 09132 Tree Protocol with Shared Locks Rules for shared & exclusive locks? A B C D EF T 1 S lock(released) T 1 S lock (held) T 1 X lock (released) T 1 X lock (will get) T 2 reads: B modified by T 1 F not yet modified by T 1
133
CS 245Notes 09133 Need more restrictive protocol Will this work?? –Once T 1 locks one object in X mode, all further locks down the tree must be in X mode Tree Protocol with Shared Locks
134
CS 245Notes 09134 Validation Transactions have 3 phases: (1) Read –all DB values read –writes to temporary storage –no locking (2) Validate –check if schedule so far is serializable (3) Write –if validate ok, write to DB
135
CS 245Notes 09135 Key idea Make validation atomic If T 1, T 2, T 3, … is validation order, then resulting schedule will be conflict equivalent to S s = T 1 T 2 T 3...
136
CS 245Notes 09136 To implement validation, system keeps two sets: FIN = transactions that have finished phase 3 (and are all done) VAL = transactions that have successfully finished phase 2 (validation)
137
CS 245Notes 09137 Example of what validation must prevent: RS(T 2 )={B} RS(T 3 )={A,B} WS(T 2 )={B,D} WS(T 3 )={C} time T 2 start T 2 validated T 3 validated T 3 start =
138
CS 245Notes 09138 T 2 finish phase 3 Example of what validation must prevent: RS(T 2 )={B} RS(T 3 )={A,B} WS(T 2 )={B,D} WS(T 3 )={C} time T 2 start T 2 validated T 3 validated T 3 start = allow T 3 start
139
CS 245Notes 09139 Another thing validation must prevent: RS(T 2 )={A} RS(T 3 )={A,B} WS(T 2 )={D,E} WS(T 3 )={C,D} time T 2 validated T 3 validated finish T 2
140
CS 245Notes 09140 Another thing validation must prevent: RS(T 2 )={A} RS(T 3 )={A,B} WS(T 2 )={D,E} WS(T 3 )={C,D} time T 2 validated T 3 validated finish T 2 BAD: w 3 (D) w 2 (D)
141
CS 245Notes 09141 finish T 2 Another thing validation must prevent: RS(T 2 )={A} RS(T 3 )={A,B} WS(T 2 )={D,E} WS(T 3 )={C,D} time T 2 validated T 3 validated allow finish T 2
142
CS 245Notes 09142 Validation rules for T j : (1) When T j starts phase 1: ignore(T j ) FIN (2) at T j Validation: if check (T j ) then [ VAL VAL U {T j }; do write phase; FIN FIN U {T j } ]
143
CS 245Notes 09143 Check (T j ): For T i VAL - IGNORE (T j ) DO IF [ WS(T i ) RS(T j ) OR T i FIN ] THEN RETURN false; RETURN true;
144
CS 245Notes 09144 Check (T j ): For T i VAL - IGNORE (T j ) DO IF [ WS(T i ) RS(T j ) OR T i FIN ] THEN RETURN false; RETURN true; Is this check too restrictive ?
145
CS 245Notes 09145 Improving Check(T j ) For T i VAL - IGNORE (T j ) DO IF [ WS(T i ) RS(T j ) OR ( T i FIN AND WS(T i ) WS(T j ) )] THEN RETURN false; RETURN true;
146
CS 245Notes 09146 Exercise: T: RS(T)={A,B} WS(T)={A,C} V: RS(V)={B} WS(V)={D,E} U: RS(U)={B} WS(U)={D} W: RS(W)={A,D} WS(W)={A,C} start validate finish
147
CS 245Notes 09147 Is Validation = 2PL? 2PL Val 2PL Val 2PL Val 2PL
148
CS 245Notes 09148 S2: w2(y) w1(x) w2(x) Achievable with 2PL? Achievable with validation?
149
CS 245Notes 09149 S2: w2(y) w1(x) w2(x) S2 can be achieved with 2PL: l2(y) w2(y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(y) u2(x) S2 cannot be achieved by validation: The validation point of T2, val2 must occur before w2(y) since transactions do not write to the database until after validation. Because of the conflict on x, val1 < val2, so we must have something like S2: val1 val2 w2(y) w1(x) w2(x) With the validation protocol, the writes of T2 should not start until T1 is all done with its writes, which is not the case.
150
CS 245Notes 09150 Validation subset of 2PL? Possible proof (Check!): –Let S be validation schedule –For each T in S insert lock/unlocks, get S’: At T start: request read locks for all of RS(T) At T validation: request write locks for WS(T); release read locks for read-only objects At T end: release all write locks –Clearly transactions well-formed and 2PL –Must show S’ is legal (next page)
151
CS 245Notes 09151 Say S’ not legal (due to w-r conflict): S’:... l1(x) w2(x) r1(x) val1 u1(x)... –At val1: T2 not in Ignore(T1); T2 in VAL –T1 does not validate: WS(T2) RS(T1) –contradiction! Say S’ not legal (due to w-w conflict): S’:... val1 l1(x) w2(x) w1(x) u1(x)... –Say T2 validates first (proof similar if T1 validates first) –At val1: T2 not in Ignore(T1); T2 in VAL –T1 does not validate: T2 FIN AND WS(T1) WS(T2) ) –contradiction!
152
CS 245Notes 09152 Conclusion: Validation subset 2PL 2PL Val 2PL Val 2PL Val 2PL
153
CS 245Notes 09153 Validation (also called optimistic concurrency control) is useful in some cases: - Conflicts rare - System resources plentiful - Have real time constraints
154
CS 245Notes 09154 Summary Have studied C.C. mechanisms used in practice - 2 PL - Multiple granularity - Tree (index) protocols - Validation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.