Presentation is loading. Please wait.

Presentation is loading. Please wait.

Компьютерные технологии

Similar presentations


Presentation on theme: "Компьютерные технологии"— Presentation transcript:

1 Компьютерные технологии
История развития вычислительной техники, информационных технологий Начало XIX века – француз Жозеф Мари Жаккард перфокарты для управления ткацким станком Французский изобретатель Жозеф Мари Жаккард (Joseph-Marie Jacquard, ) придумал способ автоматического контроля за нитью при работе на ткацком станке. Способ заключался в использовании специальных карточек с просверленными в нужных местах (в зависимости от узора, который предполагалось нанести на ткань) отверстиями. Таким образом он сконструировал приспособление к ткацкому станку, работу которого можно было программировать с помощью специальных карт. Работа станка программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока. Переходя к новому рисунку, оператор просто заменял одну колоду перфокарт другой. Создание ткацкого станка, управляемого картами с пробитыми на них отверстиями и соединенные друг с другом в виде ленты, относится к одному из ключевых открытий, обусловивших дальнейшее развитие вычислительной техники. В 1804 году Ж. Жаккар изобрел ткацкую машину для выработки тканей с крупным узором. Этот узор программировался с помощью целой колоды перфокарт - прямоугольных карточек из картона. На них информация об узоре записывалась пробивкой отверстий (перфораций), расположенных в определенном порядке. При работе машины эти перфокарты ощупывались с помощью специальных штырей. Именно таким механическим способом с них считывалась информация для плетения запрограммированного узора ткани. Машина Жаккара явилась прообразом машин с программным управлением, созданных в ХХ веке.

2 Компьютерные технологии
История развития вычислительной техники, информационных технологий

3 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1822 г. – Прообраз ЭВМ Разностная машина. 1822 г. – Прообраз ЭВМ Чарльз Беббидж (26 декабря 1791, Лондон, Англия — 18 октября 1871, Иностранный член-корреспондент Императорской академии наук в Санкт-Петербурге (1832)) Разностная машина, предназначенная для расчета и печати больших математических таблиц. Бэббидж не сразу начал заниматься развитием идеи построения вычислительного механизма. Лишь в 1819 году, когда он заинтересовался астрономией, он более точно определил свои идеи и сформулировал принципы вычисления таблиц разностным методом при помощи машины, которую он впоследствии назвал разностной. Эта машина должна была производить комплекс вычислений, используя только операцию сложения. В 1819 году Чарльз Бэббидж приступил к созданию малой разностной машины, а в 1822 году он закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц. Он продемонстрировал работу машины на примере вычисления членов последовательности. Работа разностной машины была основана на методе конечных разностей. Малая машина была полностью механической и состояла из множества шестерёнок и рычагов. В ней использовалась десятичная система счисления. Она оперировала 18 разрядными числами с точностью до восьмого знака после запятой и обеспечивала скорость вычислений 12 членов последовательности в 1 минуту. Малая разностная машина могла считать значения многочленов 7-ой степени. За создание разностной машины Бэббидж был награждён первой золотой медалью Астрономического общества. Однако, малая разностная машина была экспериментальной, так как имела небольшую память и не могла быть использована для больших вычислений. В 1822 году Бэббидж задумался о создании большой разностной машины, которая должна была состоять из деталей, весить почти 14 тонн и 2,5 метра высотой. Кроме того, разностная машина должна была быть оснащена печатным устройством для вывода результатов. Память была рассчитана на разрядных чисел. Разностная машина так и не была достроена. 1855 год — братья Георг и Эдвард Шутц (англ. George & Edvard Scheutz) из Стокгольма построили первую разностную машину на основе работ Чарльза Бэббиджа. А ещё через некоторое время Мартин Виберг усовершенствовал машину Шойца и использовал её для расчётов и публикации логарифмических таблиц. В 1891 году была построена «Разностная машина 2», которая расположена сейчас в Лондонском научном музее. – Аналитическая машина В 1830 году Чарльз Бэббидж попытался создать универсальную аналитическую машину, которая должна была выполнять вычисления без участия человека. Для этого в нее вводились программы, которые были заранее записаны на перфокартах из плотной бумаги с помощью отверстий, сделанных на них в определенном порядке (слово "перфорация" означает "пробивка отверстий в бумаге или картоне"). Принципы программирования для аналитической машины Бэббиджа разработала в 1843 году Ада Лавлейс - дочь поэта Байрона. Аналитическая машина должна уметь запоминать данные и промежуточные результаты вычислений, то есть иметь память. Эта машина должна была содержать три основных части: устройство для хранения чисел, набиравшихся с помощью зубчатых колес (память), устройство для операций над числами (арифметическое устройство) и устройство для операций над числами с помощью перфокарт (устройство программного управления). Работа по созданию аналитической машины не была завершена, но заложенные в ней идеи помогли построить в XX веке первые компьютеры (в переводе с английского это слово означает "вычислитель"). В чем же суть достижений Чарльза Бэббиджа и его ученицы и помощницы Ады Лавлейс? 1. Аналитическая машина состояла из четырех основных частей, которые входят и в современный компьютер: Блок хранения исходных, промежуточных и результирующих данных (склад - память) Блок обработки данных (мельница - арифметическое устройство) Блок управления последовательностью вычислений (устройство управления) Блок ввода исходных данных и печати результатов (устройства ввода-вывода) 2. Идея программного управления процессом вычислений. 3. Предложение использовать перфокарты для ввода и вывода данных и для управления, а также для обмена и передачи чисел в самой машине. 4. Изобретение системы предварительного переноса для ускорения расчетов. 5. Применение способа изменения хода вычислений, получившего в дальнейшем название условного перехода. 6. Введение понятия циклов операций и рабочих ячеек.

4 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1830 г. – Аналитическая машина Принципы программирования для аналитической машины Бэббиджа разработала в 1843 году Огаста Ада Байрон     Сотрудницей и помощницей Ч.Беббеджа во многих его научных изысканиях была леди Лавлейс.     Единственная научная работа леди Лавлейс относилась к "вопросам программирования для аналитической машины Беббеджа" и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением.    Августа Ада Лавлейс - дочь великого английского поэта Джорджа Байрона родилась 10 декабря 1815 года. Семейная жизнь Д.Байрона сложилась неудачно - в единственный и последний раз Байрон видел свою дочь через месяц после рождения. 21 апреля 1816 года Байрон подписал официальный развод и навсегда покинул Англию. по истечении года совместной жизни супруги навсегда расстались. Его жена Анабелла Милбэнк ( ) была одаренным человеком. Она любила математику и с детских лет до замужества занималась ею.     В июле 1835 г. Ада вышла замуж за Уильяма, восемнадцатого лорда Кинга, ставшего впоследствии первым графом Лавлейсом. Уильям Лавлейс, спокойный и приветливый человек, с одобрением относился к научным занятиям своей жены.     В мае 1836 г. у Ады родился сын, в феврале 1838 г. - дочь, а в конце 1839 г. - второй сын. Но ни семейные заботы, ни слабое здоровье Ады не поколебали ее решимости заниматься математикой.     В начале 50-х годов у Ады появляются первые признаки рака, а 27 ноября 1852 г. Ада скончалась, не дожив нескольких дней до 37 лет, в том же возрасте, что и лорд Байрон. Согласно завещанию она была похоронена (3 декабря) рядом с могилой отца в семейном склепе Байронов в Ноттингемпшире. Ада Лавлейс скончалась 27 ноября 1852 года от кровопускания при попытке лечения рака матки (от кровопускания же скончался и её отец) В 1842 году итальянский ученый Манибера познакомился с аналитической машиной, пришел в восторг и сделал первое подробное описание изобретения. Статья была опубликована на французском, и именно Ада Лавлейс взялась перевести ее на английский. Позднее Бэббидж предложил ей снабдить текст подробными комментариями. Именно эти комментарии дают потомкам основания называть Аду Байрон первым программистом планеты. В числе прочего она сообщила Бэббиджу, что составила план операций для аналитической машины, с помощью которых можно решить уравнение Бернулли, которое выражает закон сохранения энергии движущейся жидкости. В материалах Бэббиджа и комментариях Лавлейс намечены такие понятия, как подпрограмма и библиотека подпрограмм, модификация команд и индексный регистр, которые стали употребляться только в 50-х годах XX века. Сам термин библиотека был введен Бэббиджем, а термины рабочая ячейка и цикл предложила Ада Лавлейс. Её работы в этой области были опубликованы в 1843 году. Однако в то время считалось неприличным для женщины издавать свои сочинения под полным именем и, Лавлейс поставила на титуле только свои инициалы. Поэтому ее математические труды, как и работы многих других женщин-ученых, долго пребывали в забвении.

5 Компьютерные технологии
История развития вычислительной техники, информационных технологий Середина XIX века логическая алгебра (Булева алгебра) Джордж Буль (George Boole) ( – ) Универсальный логический язык создал в 1847 году английский математик Джордж Буль. Он разработал исчисление высказываний, впоследствии названное в его честь булевой алгеброй. Пользуясь ею, можно закодировать любые утверждения, истинность или ложность которых нужно доказать, а затем манипулировать ими подобно обычным числам в математике. Буль Джордж ( ) - английский математик и логик, один из основоположников математической логики. Разработал алгебру логики (в трудах "Математический анализ логики" (1847) и "Исследование законов мышления" (1854)). Джордж Буль по праву считается отцом математической логики. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ), отрицание (НЕ). Огромную роль в распространении булевой алгебры и ее развитии сыграл американский математик Чарльз Пирс. Пирс Чарльз ( ) - американский философ, логик, математик и естествоиспытатель, известен своими работами по математической логике. Предмет рассмотрения в алгебре логики - так называемые высказывания, т.е. любые утверждения, о которых можно сказать, что они либо истинны, либо ложны: "Омск - город в России", "15 - четное число". Первое высказывание истинно, второе - ложно. Сложные высказывания, получаемые из простых с помощью союзов И, ИЛИ, ЕСЛИ...ТО, отрицания НЕ, также могут быть истинными или ложными. Их истинность зависит только от истинности или ложности образующих их простых высказываний, например: "Если на улице нет дождя, то можно пойти гулять". Основная задача булевой алгебры состоит в изучении этой зависимости. Рассматриваются логические операции, позволяющие строить сложные высказывания из простых: отрицание (НЕ), конъюнкция (И), дизъюнкция (ИЛИ) и другие.

6 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1880 г. - В.Т. Однер, Россия Механический ариф-мометр с зубчатыми колесами. 1880 г. - В.Т. Однер в России создал механический арифмометр с зубчатыми колесами, и в 1890 году наладил его массовый выпуск. В дальнейшем под названием "Феликс" он выпускался до 50-х годов XX века Вильгодт Теофилович Однер, швед по национальности, жил в Санкт-Петербурге и работал мастером экспедиции, выпускающей государственные денежные и ценные бумаги. Все свои патентованный изобретения он сделал в России: механический способ нумерации денежных знаков, машинка для изготовление папирос, механический ящик для тайного голосования, турникеты.  Однако главным достижением Однера стал арифмометр. надо признать, что до Однера тоже были арифмометры - системы К.Томаса. Однако они отличались ненадежностью, большими габаритами и неудобством в работе. Над арифмометром он начал работать в 1874 году, а в 1890 году налаживает их массовый выпуск. Их модификация "Феликс" выпускалась до 50-х годов. Главная особенность детища Однера заключается в применении зубчатых колес с переменным числом зубцов (это колесо носит имя Однера) вместо ступенчатых валиков Лейбница. Оно проще валика конструктивно и имеет меньшие размеры.

7 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1884—1887 годы Герман Холлерит электрическая табулирующая система 1884—1887 годы — Холлерит (29 февраля 1860 — 17 ноября 1929 — американский инженер и изобретатель) разработал электрическую табулирующую систему, которая использовалась в переписях населения США в 1890-м и 1900-м годах (перфокарты 12 рядов до 20 отверстий). Статический табулятор. ("Этот аппарат работает также безошибочно, как машина бессмертных богов, но намного превосходит их по быстродействию.") Эта машина позволила в несколько раз сократить время подсчетов при переписи населения в США. В 1890 г. изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую 500 сотрудников раньше выполняли целых 7 лет, Холлерит с 43 помощниками на 43 табуляторах закончили за один месяц. В 1896 году Холлерит основал фирму под названием Tabulating Machine Company. В 1911 он продал свою компанию, и она вошла в промышленный конгломерат C-T-R, созданный предпринимателем Чарльзом Флинтом. В 1924 C-T-R была переименована в IBM. В 1911 году Tabulating Machine Company была объединена с двумя другими фирмами, специализировавшимися на автоматизации обработки статистических данных Tabulating Machine Company свое современное название IBM (International Business Machines) получила в 1924 г. Она стала электронной корпорацией, одним из крупнейших мировых производителей всех видов компьютеров и программного обеспечения, провайдером глобальных информационных сетей. Основателем IBM стал Томас Уотсон Старший, возглавивший компанию в 1914 году, фактически создавший корпорацию IBM и руководивший ею более 40 лет. С середины 1950-х годов Ай-Би-Эм заняла ведущее положение на мировом компьютерном рынке. В 1981 году компания создала свой первый персональный компьютер, который стал стандартом в своей отрасли. К середине 1980-х годов IBM контролировала около 60% мирового производства электронно-вычислительных машин.

8 Компьютерные технологии
История развития вычислительной техники, информационных технологий В 1897 г. изобретатель из Страсбурга К.-Ф. Браун сконструировал первую электронно-лучевую трубку. В 1897 г. изобретатель из Страсбурга К.-Ф. Браун сконструировал первую электронно-лучевую трубку.

9 Компьютерные технологии
История развития вычислительной техники, информационных технологий В 1907 году петербургский ученый Борис Л. Розинг получил патент на «способ электрической передачи изображений» (электронно-лучевая трубка как приемник данных). В 1907 году петербургский ученый Борис Л. Розинг получил патент на «способ электрической передачи изображений» (электронно-лучевая трубка как приемник данных). Ассистентом у Розинга в то время работал будущий "отец" телевидения Владимир Зворыкин. К 1912 году  Розинг разработал основные элементы чёрно-белого телевидения, включая систему развёртки на 12 строк (в современных системах — 800 строк).

10 Компьютерные технологии
История развития вычислительной техники, информационных технологий Английский ученый в области радиотехники и электротехники, член Лондонского королевского общества (1892) Джон Амброз Флеминг (John Ambrose Fleming, ), изучая "эффект Эдисона", создает диод. Диоды используются для преобразования радиоволн в электросигналы, которые могут передаваться на большие расстояния. Диод Флеминга 1906 года Джон Амброз Флеминг

11 Компьютерные технологии
История развития вычислительной техники, информационных технологий В 1907 г. американский инженер Ли де Форест   (1873—1961) установил, что поместив между катодом и анодом металлическую сетку и подавая на нее напряжение можно управлять анодным током практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа – триод. Ее свойства как прибора для усиления и генерирования высокочастотных колебаний обусловили быстрое развитие радиосвязи. Триод стал основным элементом ламповых ЭВМ. Ли де Форест - изобретатель первой электронной усилительной лампы Одна из первых ламп Ли де Фореста

12 Компьютерные технологии
История развития вычислительной техники, информационных технологий Русский ученый Михаил Александрович Бонч-Бруевич и английские ученые В.Икклз и Ф.Джордан (1919) независимо друг от друга создали электронное реле Русский ученый Михаил Александрович Бонч-Бруевич (9(21) февраля 1888, Орел - 7 марта 1940, Ленинград) и английские ученые В.Икклз и Ф.Джордан (1919) независимо друг от друга создали электронное реле, названное англичанами триггером, которое сыграло большую роль в развитии компьютерной техники. Это электронное устройство было способно запоминать электрические сигналы. Примечание По принципу действия триггер похож на качели с защелками, установленными в верхних точках качания. Достигнут качели одной верхней точки – сработает защелка, качание остановится, и в этом устойчивом состоянии они могут быть как угодно долго. Откроется защелка – качание возобновится до другой верхней точки, здесь также сработает защелка, снова остановка, и так – сколько угодно раз. По тому, где окажутся качели через некоторое время после их установки в известном положении, можно судить, открывали защелку или нет. Качели как бы запоминают открывание защелки – также и электронный триггер запоминает, поступал на него электрический сигнал или нет.

13 Компьютерные технологии
История развития вычислительной техники, информационных технологий В 1923 г. американский ученый русского происхождения В.К.Зворыкин изобрел иконоскоп — передающую электронную телевизионную трубку (более совершенную по конструкции, чем у Бэрда). В 1923 г. американский ученый русского происхождения В.К.Зворыкин изобрел иконоскоп — передающую электронную телевизионную трубку (более совершенную по конструкции, чем у Бэрда). Телевизионная трубка (кинескоп) Зворыкина стала основным элементом современных телевизоров. В 1926 году шотландец Дж.-Л. Бэрд впервые публично продемонстрировал телевидение. Владимир Зворыкин

14 Компьютерные технологии
История развития вычислительной техники, информационных технологий Перфоленты В конце XIX века была изобретена перфолента - бумажная или целлулоидная пленка, на которую информация наносилась перфоратором в виде совокупности отверстий. Широкая бумажная перфолента была применена в монотипе - наборной машине, изобретенной Т. Ланстоном в 1892 году. Монотип состоял из двух самостоятельных аппаратов: клавиатуры и отливного аппарата. Клавиатура служила для составления программы набора на перфоленте, а отливной аппарат изготавливал набор в соответствии с ранее составленной на клавиатуре программой из специального типографского сплава - гарта.

15 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1928 г. – 80-колонные перфокарты для IBM Перфокарты впервые начали применяться в ткацких станках Жаккарда (1808) для управления узорами на тканях. В информатике перфокарты впервые были применены в «интеллектуальных машинах» коллежского советника С.Н. Корсакова (1832), механических устройствах для информационного поиска и классификации записей. Перфокарты также планировалось использовать в «аналитической машине» Бэббиджа. В конце XIX в. началось использование перфокарт для обработки результатов переписей населения в США (см. табулятор Холлерита). Существовало много разных форматов перфокарт; наиболее распространённым был «формат IBM», введённый в 1928 г. — 12 строк и 80 колонок, размер карты 7⅜ × 3¾ дюйма (187,325 × 82,55 мм), толщина карты 0,007 дюйма (0,178 мм). Первоначально углы были острые, а с 1964 г. — скруглённые (впрочем, в СССР и позже использовали карты с нескруглёнными углами).

16 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1928 г. Цветное Телевидение 1880 г. – практически одновременно русский ученый П.И. Бахметьев и португальский физик А. де Пайва выдвинули основополагающий принцип телевидения — необходимость разложения изображения на отдельные элементы для последовательной их передачи на расстояние (развертка). 1884 г. - Пауль Нипков (Германия) создал систему механической развертки в телевидении - "диск Нипкова". 1900 г. - русский изобретатель А.А. Полумордвинов разработал цветное телевидение, основанное, как и современная система цветного телевидения, на трехкомпонентной теории цвета. 1900 г. - русский военный инженер К.Д. Перский на Международном электротехническом конгрессе в Париже впервые ввел термин "телевидение" ("television"), который получил распространение во всем мире. 1902 г. - русский изобретатель А.А. Полумордвинов запатентовал «Аппарат для передачи изображения и способ этой передачи в связи с одновременной передачей звука». Технологии телевидения не были изобретены одним человеком и за один раз. В основе телевидения лежит открытие фотоэффекта в селене, сделанное Уиллоуби Смитом в 1873 году. Изобретение сканирующего диска Паулем Нипковым в 1884 году послужило толчком в развитии механического телевидения, которое пользовалось популярностью вплоть до 1930-х годов. Основанные на диске Нипкова системы практически были реализованы лишь в 1925 году Дж. Бэрдом в Великобритании, Ч. Дженкинсом в США, И. А. Адамяном и независимо Л. С. Терменом в СССР. 10 октября 1906 года изобретатели Макс Дикманн, ученик Карла Фердинанда Брауна, и Г. Глаге зарегистрировали патент на использование трубки Брауна для передачи изображений.[4]. Браун был против исследований в этой области, считая идею ненаучной. В 1907 году Дикманном был продемонстрирован телевизионный приёмник, с двадцатистрочным экраном размером 3×3 см и частотой развёртки 10 кадр/с.[5] Первый патент на используемое сейчас электронное телевидение получил профессор Петербургского технологического института Борис Розинг, который подал заявку на патентование «Способа электрической передачи изображения» 25 июля 1907 года. Однако ему удалось добиться передачи на расстояние только неподвижного изображения — в опыте 9 мая 1911 года. Настоящим прорывом в чёткости изображения электронного телевидения, что решило в конце концов в его пользу спор с механическим телевидением, стал «иконоскоп», изобретённый в 1923 году Владимиром Зворыкиным (он работал в то время для Radio Corporation of America). Иконоскоп — первая электронная передающая телевизионная трубка, позволившая начать массовое производство телевизионных приёмников. Его изобретение было запатентовано также советским учёным Семёном Катаевым в 1931 году, однако Зворыкин смог создать работающую модель на год раньше советских учёных — в 1933 году. В 1926 году Кэндзиро Такаянаги впервые в мире при помощи электронно-лучевой трубки продемонстрировал изображение буквы катакана . Движущееся изображение впервые в истории было передано на расстояние 26 июля 1928 года в Ташкенте изобретателями Борисом Грабовским и И. Ф. Белянским. Хотя акт Ташкентского трамвайного треста, на базе которого проводились опыты, свидетельствует, что полученные изображения были грубые и неясные, именно ташкентский опыт можно считать рождением современного телевидения. Первый в истории телевизионный приёмник, на котором был произведён ташкентский опыт, назывался «телефотом». Заявка на патентование телефота по настоянию профессора Розинга была подана Б. Грабовским, Н. Пискуновым и В. Поповым 9 ноября 1925 года. Согласно воспоминаниям В. Маковеева, по поручению Минсвязи СССР все сохранившиеся документы о телефоте были изучены на предмет установления возможного приоритета советской науки кафедрами телевидения Московского и Ленинградского институтов связи. В итоговом документе констатировалось, что работоспособность «радиотелефота» не доказана ни документами, ни показаниями непосредственных свидетелей. Иного мнения относительно перспектив изобретения Грабовского придерживались в США, и в романе Митчела Уилсона «Брат мой, враг мой», излагающем американскую версию истории создания телевидения, где именно «телефот» описан как предтеча современного телевидения. По другим данным первая передача движущегося изображения произошла 26 января 1926 года шотландским изобретателем Джоном Бэйрдом, основавшим в 1928 год Baird Television Development Company. В 1923 году Зворыкин (В 1919 году эмигрировал в США, где стал сотрудником компании «Вестингауз» (англ. Westinghouse Electric Corporation). С 1929 года — сотрудник фирмы «Рэдио корпорейшн оф Америка» (англ. Radio Corporation of America, RCA), возглавлял её лабораторию электроники) подал патентную заявку (US Patent of ) на телевидение, осуществляемое полностью на электронном принципе Хотя систему цветного телевидения разработал еще Зворыкин в 1928 году, лишь к 1950 году стало возможна ее реализация.

17 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1936 г. – Англичанин Алан Тьюринг опубликовал основопо-лагающую работу "О вычисли-мых числах", заложив теорети-ческие основы теории алгорит-мов. Тьюринг Алан ( ) - английский математик. Основные труды - по математической логике и вычислительной математике. В гг. написал основополагающую работу "О вычислимых числах", в которой ввел понятие абстрактного устройства, названного впоследствии "машиной Тьюринга". В этом устройстве он предвосхитил основные свойства современного компьютера. Тьюринг назвал свое устройство "универсальной машиной", так как она должна была решать любую допустимую (теоретически разрешимую) математическую или логическую задачу. Данные в нее нужно вводить с бумажной ленты, поделенной на ячейки - клетки. В каждой такой клетке должен был либо содержаться символ, либо нет. Машина Тьюринга могла обрабатывать вводимые с ленты символы и изменять их, то есть стирать их и записывать новые по инструкциям, хранимым в ее внутренней памяти. Американский математик Алан Тьюринг (статья "О вычислительных числах") и независимо от него американский математик и логик Э.Пост (уроженец Польши) выдвинули и разработали концепцию абстрактной вычислительной машины. "Машина Тьюринга" - гипотетический универсальный преобразователь дискретной информации, теоретическая вычислительная система. Тьюринг и Пост показали принципиальную возможность решения автоматами любой проблемы при условии возможности ее алгоритмизации с учетом выполняемых ими операций.

18 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1937 год Джордж Стибиц электромеханический двоичный сумматор В 1937 году Джордж Стибиц создал из обыкновенных электромеханических реле двоичный сумматор - устройство, способное выполнять операцию сложения чисел в двоичном коде. И сегодня двоичный сумматор по-прежнему является одним из основных компонентов любого компьютера, основой его арифметического устройства.

19 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1937 год Конрад Цузе вычислительная машина Z1 на основе электромеханических реле. В 1937 году Конрад Цузе создал свою первую вычислительную машину Z1 на основе электромеханических реле. Исходные данные вводились в нее с помощью клавиатуры, а результат вычислений высвечивался на панели с множеством электрических лампочек. Конрад Цузе (Konrad Zuse, ) создал вычислительную машину Z1, которая имела клавиатуру для ввода условий задачи. По завершению вычислений результат высвечивался на панели с множеством маленьких лампочек. Общая площадь, которую занимала машина составляла 4 кв.м. Конрад Цузе запатентовал способ автоматических вычислений. В 1938 году К. Цузе создал усовершенствованную модель Z2. Программы в нее вводились с помощью перфоленты. Ее изготавливали, пробивая отверстия в использованной 35-миллиметровой фотопленке. В 1941 году К. Цузе построил действующий компьютер Z3, а позднее и Z4, основанные на двоичной системе счисления. Они использовались для расчетов при создании самолетов и ракет. В 1942 году Конрад Цузе и Хельмут Шрайер задумали перевести Z3 с электромеханических реле на вакуумные электронные лампы. Такая машина должна была работать в 1000 раз быстрее, но создать ее не удалось - помешала война.

20 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1939 г. – Винсент Атанасов совместно с Клиффордом Э. Берри построил и испытал первую Вычислительную Машину (АВС - Atanasoft Berry Computer). В 1973 году по суду признано первенство в изобретении ЭВМ (Уотергейт) В ней использовалась двоичная система счисления. Для ввода данных и вывода результатов вычислений использовались перфокарты. Работа над этой машиной в 1942 году была практически завершена, но из-за войны дальнейшее финансирование было прекращено.

21 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1943 г. – Под руководством американца Говарда Айкена, по заказу и при поддержке фирмы IBM создан Mark-1 - первый программно-управляемый компьютер. Он был построен на электромеханических реле, а программа обработки данных вводилась с перфоленты. Весила она около 35 тонн.

22 Марк 1 При ее создании использовались идеи, заложенные Ч. Бэббиджем в его аналитической машине. В отличие от Стибица и Цузе, Эйкен не осознал преимуществ двоичной системы счисления и в своей машине использовал десятичную систему. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух таких чисел ей было необходимо затратить 4 секунды. В 1947 году была создана машина "Марк-2", в которой уже использовалась двоичная система счисления. В этой машине операции сложения и вычитания занимали в среднем 0,125 секунды, а умножение - 0,25 секунды.

23 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1945 г. Джон фон Нейман принципы работы и компоненты современного программно-управляемого компьютера. 1945 г. – Американец Джон фон Нейман в отчете "Предварительный доклад о машине Эниак" сформулировал принципы работы и компоненты современного программно-управляемого компьютера. Он определил пять компонент: Арифметико-логическое устройство (АЛУ). Устройство управления. Память. Устройство ввода информации. Устройство вывода информации. С этих пор архитектура подобных компьютеров (подавляющее большинство современных компьютеров) называется фон-неймановской. Нейман Джон фон ( ) - американский математик и физик, участник работ по созданию атомного и водородного оружия. Родился в Будапеште, с 1930 года проживал в США. В своем докладе, опубликованном в 1945 году и ставшем первой работой по цифровым электронным компьютерам, выделил и описал "архитектуру" современного компьютера. Фон Нейман считал, что компьютер должен работать на основе двоичной системы счисления, быть электронным и выполнять все операции последовательно, одну за другой. Эти принципы заложены в основу всех современных компьютеров.

24 Компьютерные технологии
История развития вычислительной техники, информационных технологий Арифметико-логическое устройство (АЛУ). Устройство управления. Память. Устройство ввода информации. Устройство вывода информации. 1945 г. – Американец Джон фон Нейман в отчете "Предварительный доклад о машине Эниак" сформулировал принципы работы и компоненты современного программно-управляемого компьютера. Он определил пять компонент: Арифметико-логическое устройство (АЛУ). Устройство управления. Память. Устройство ввода информации. Устройство вывода информации. С этих пор архитектура подобных компьютеров (подавляющее большинство современных компьютеров) называется фон-неймановской.

25 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1946 г. – ENIAC (Джон Преспер Экерт и Джон Уильям Мочли ), в1000 раз более быстродействующий, чем Mark-1. 1946 г. – ENIAC (Дж. Проспер Экарт, Джон Могли) - первая универсальная электронная цифровая вычислительная машина. 18000 электрических ламп, 1500 электромеханических реле. Применение ламп повысило скорость выполнения операций в 1000 раз по сравнению с устройством "Марк-1". Ее вес составлял 30 тонн, она занимала 170 кв. м площади. Считала машина в двоичной системе и производила 5000 операций сложения или 300 операций умножения в секунду. В этой машине было не только арифметическое, но и запоминающее устройство. Ввод числовых данных осуществлялся с помощью перфокарт, программы же вводились в эту машину с помощью штекеров и наборных полей. Поэтому для подготовки к решению новой задачи требовалось до нескольких дней, хотя сама задача решалась за несколько минут.

26 ЭВМ ENIAC 18000 электрических ламп, 1500 электромеханических реле. Применение ламп повысило скорость выполнения операций в 1000 раз по сравнению с устройством "Марк-1". Ее вес составлял 30 тонн, она занимала 170 кв. м площади. Считала машина в двоичной системе и производила 5000 операций сложения или 300 операций умножения в секунду.

27 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1947 г. – Изобретение транзистора (Джон Бардин, Уильям Шокли, Уолтер Бронтейн) Машина на электронных лампах работала значительно быстрее, чем на электромеханических реле, но сами электронные лампы были ненадежны. Они часто выходили из строя. Для их замены в 1947 году Джон Бардин, Уолтер Браттейн и Уильям Шокли предложили использовать изобретенные ими переключающие полупроводниковые элементы - транзисторы. Бардин Джон ( ) - американский физик. Один из создателей первого транзистора (Нобелевская премия 1956 г. по физике совместно с У. Браттейном и У. Шокли за открытие транзисторного эффекта). Один из авторов микроскопической теории сверхпроводимости (вторая Нобелевская премия 1957 г. совместно с Л. Купером и Д. Шриффеном). Браттейн Уолтер ( ) - американский физик, один из создателей первого транзистора, лауреат Нобелевской премии по физике 1956 года. Шокли Уильям ( ) - американский физик, один из создателей первого транзистора, лауреат Нобелевской премии по физике 1956 года.

28 Компьютерные технологии
История развития вычислительной техники, информационных технологий В 1948 году Шеннон Клод (1916 г.р.) - американский инженер и математик, основоположник математической теории информации, опубликовал работу «Математическая теория связи». Шеннон в ней представил свою теорию передачи и обработки информации, которая включала все виды сообщений, в том числе передаваемых по нервным волокнам в живых организмах. Шеннон ввел понятие количества информации как меры неопределенности состояния системы, снимаемой при получении информации.

29 Компьютерные технологии
История развития вычислительной техники, информационных технологий 4 декабря 1948 г. Государственный комитет Совета министров СССР по внедрению передовой техники в народное хозяйство зарегистрировал за номером изобретение член-корреспондентом АН СССР по Отделению технических наук И.С.Бруком и молодым инженером Б.И.Рамеевым цифровой электронной вычислительной машины. Это первый официально зарегистрированный документ, касающийся развития вычислительной техники в нашей стране. Этот день с полным правом назван днем рождения российской информатики.

30 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1950 г. – МЭСМ (Лебедев) Первая в СССР Малая Электронная Счетная машина (МЭСМ) на электронных лампах была построена в гг. под руководством академика С.А. Лебедева. Независимо от зарубежных учёных С.А. Лебедев разработал принципы построения ЭВМ с хранимой в памяти программой. МЭСМ была первой такой машиной. А в гг. под его руководством была разработана Быстродействующая Электронная Счетная машина (БЭСМ), выполнявшая 8000 операций в секунду. Лебедев Сергей Алексеевич Созданием электронных вычислительных машин руководили крупнейшие советские ученые и инженеры И.С. Брук, В.М. Глушков, Ю.А. Базилевский, Б.И. Рамеев, Л.И. Гутенмахер, Н.П. Брусенцов. К первому поколению советских компьютеров относятся ламповые ЭВМ - "БЭСМ-2", "Стрела", "М-2", "М-3", "Минск", "Урал-1", "Урал-2", "М-20". Лебедев Сергей Алексеевич

31 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1951 г. – UNIVAC I, первый работающий компьютер для коммерческого использования Совершенствование первых образцов вычислительных машин привело в 1951 году к созданию компьютера UNIVAC, предназначенного для коммерческого использования. Он стал первым серийно выпускаемым компьютером. Инициатива создания этой системы принадлежала Томасу Уотсону-младшему. В 1937 году он начал работать в компании в качестве коммивояжера. Он прерывал свою работу в IBM лишь во время войны, когда был летчиком военно-воздушных сил Соединенных Штатов. Вернувшись на работу в компанию в 1946-м, он стал ее вице-президентом и возглавлял компанию IBM с 1956 до 1971 года. Оставаясь членом совета директоров IBM, Томас Уотсон с 1979 по 1981 год являлся послом Соединенных Штатов в СССР.

32 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1952 г. – IBM Серийный ламповый компьютер IBM 701, появившийся в 1952 году, выполнял до 2200 операций умножения в секунду. Инициатива создания этой системы принадлежала Томасу Уотсону-младшему. В 1937 году он начал работать в компании в качестве коммивояжера. Он прерывал свою работу в IBM лишь во время войны, когда был летчиком военно-воздушных сил Соединенных Штатов. Вернувшись на работу в компанию в 1946-м, он стал ее вице-президентом и возглавлял компанию IBM с 1956 до 1971 года. Оставаясь членом совета директоров IBM, Томас Уотсон с 1979 по 1981 год являлся послом Соединенных Штатов в СССР.

33 Компьютерные технологии
История развития вычислительной техники, информационных технологий г. – БЭСМ - 1 и БЭСМ - 2 (серийный выпуск) 1953 г. – Джей Форрестер изобрел магнитное ЗУ 1954 г. – IBM 650 (15 лет 1500 ЭВМ) В современных компьютерах микроскопические транзисторы в кристалле интегральной схемы сгруппированы в системы "вентилей", выполняющих логические операции над двоичными числами. Так, например, с их помощью построены описанные выше двоичные сумматоры, позволяющие складывать многоразрядные двоичные числа, производить вычитание, умножение, деление и сравнение чисел между собой. Логические "вентили", действуя по определенным правилам, управляют движением данных и выполнением инструкций в компьютере. Родоначальниками советской микроэлектроники были ученые, эмигрировавшие из США в СССР: Ф.Г. Старос (Альфред Сарант) и И.В. Берг (Джоэл Барр). Они стали инициаторами, организаторами и руководителями центра микроэлектроники в Зеленограде под Москвой. Ф.Г. Старос Компьютеры третьего поколения на интегральных микросхемах появились в СССР во второй половине 1960-х годов. Были разработаны Единая Система ЭВМ (ЕС ЭВМ) и Система Малых ЭВМ (СМ ЭВМ) и организовано их серийное производство. Как уже указывалось выше, эта система представляла собой клон американской системы IBM/360. Евгений Алексеевич Лебедев был ярым противником начавшегося в 1970-е годы копирования американской системы IBM|360, которая в советском варианте носила название ЕС ЭВМ. Роль ЕС ЭВМ в развитии отечественных компьютеров неоднозначна. На начальном этапе появление ЕС ЭВМ привело к унификации компьютерных систем, позволило установить начальные стандарты программирования и организовывать широкомасштабные проекты, связанные с внедрением программ. Ценой этого было повсеместное свёртывание собственных оригинальных разработок и попадание в полную зависимость от идей и концепций фирмы IBM, далеко не самых лучших по тому времени. Резкий переход от простых в эксплуатации советских машин к намного более сложным аппаратным и программным средствам IBM/360 привёл к тому, что многие программисты должны были преодолевать трудности, связанные с недоделками и ошибками IBM-ских разработчиков. Начальные модели ЕС ЭВМ по эксплуатационным характеристикам нередко уступали отечественным компьютерам того времени. На позднем этапе, особенно в 80-е, повсеместное внедрение ЕС ЭВМ превратилось в серьёзный тормоз для развития программного обеспечения, баз данных, диалоговых систем. После дорогостоящих и заранее спланированных закупок предприятия были вынуждены эксплуатировать морально устаревшие компьютерные системы. Параллельно развивались системы на малых машинах и на персональных компьютерах, которые становились всё более и более популярны. На позднейшем этапе, с началом перестройки, с годов, нашу страну наводнили зарубежные персональные компьютеры. Никакие меры уже не могли остановить кризис серии ЕС ЭВМ. Отечественная промышленность не смогла создать аналогов или заменителей ЕС ЭВМ на новой элементной базе. Экономика СССР не позволила к тому времени затратить гигантские финансовые средства для создания микроэлектронной техники. В итоге произошёл полный переход на импортные компьютеры. Были окончательно свёрнуты программы по разработке отечественных компьютеров. Возникли проблемы переноса технологий на современные компьютеры, модернизации технологий, трудоустройства и переквалификации сотен тысяч специалистов. Прогноз С.А. Лебедева оправдался. И в США, и во всем мире в дальнейшем пошли по пути, который он предлагал: с одной стороны, создаются суперкомпьютеры, а с другой - целый ряд менее мощных, ориентированных на различные применения компьютеров - персональных, специализированных и др. Четвертое поколение советских компьютеров реализовано на основе больших (БИС) и сверхбольших (СБИС) интегральных микросхем. Примером крупных вычислительных систем четвертого поколения стал многопроцессорный комплекс "Эльбрус-2" с быстродействием до 100 млн операций в секунду. В 1950-х годах было создано второе поколение компьютеров, выполненных на транзисторах. В результате быстродействие машин возросло в 10 раз, а размеры и вес значительно уменьшились. Стали применять запоминающие устройства на магнитных ферритовых сердечниках, способные хранить информацию неограниченное время даже при отключении компьютеров. Их разработал Джой Форрестер в годах. Большие объемы информации хранились на внешнем носителе, например на магнитной ленте или на магнитном барабане. Первый в истории вычислительной техники накопитель на жестких магнитных дисках (винчестер-winchester) разработала в 1956 году группа инженеров IBM под руководством Рейнольда Б. Джонсона. Устройство носило название 305 RAMAC - контрольно-считывающее устройство по методу случайного доступа (Random Access Method of Accounting and Control). Накопитель состоял из 50 алюминиевых дисков диаметром 24 дюйма (около 60 см) при толщине 2,5 см каждый. На поверхность алюминиевой пластины наносился магнитный слой, на который и осуществлялась запись. Вся эта конструкция из дисков на общей оси в рабочем режиме вращалась с постоянной скоростью 1200 об/мин, а сам накопитель занимал площадку размерами 3х3,5 м. Суммарная емкость его составляла 5 Мb. Одним из важнейших принципов, использованных в конструкции RAMAC 305, явилось то, что головки не прикасались к поверхности дисков, а зависали на малом фиксированном расстоянии. Для этого использовались специальные воздушные сопла, которые направляли поток к диску через маленькие отверстия в держателях головок и тем самым создавали зазор между головкой и поверхностью вращающейся пластины. Винчестер (жесткий диск) обеспечил компьютерных пользователей возможностью хранить очень большие объемы информации и при этом быстро извлекать нужные данные. После создания винчестера в 1958 году от носителей на магнитных лентах отказались. В 1959 году Д. Килби, Д. Херни, К. Леховец и Р. Нойс (рис. 7.14) изобрели интегральные микросхемы (чипы), в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволило сократить пути прохождения тока при переключениях. Скорость вычислений при этом увеличилась в десятки раз. Существенно уменьшились и габариты машин. Появление чипа позволило создать третье поколение компьютеров. И в 1964 году фирма IBM начинает выпуск компьютеров IBM-360 на интегральных микросхемах.

34 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1956 г. БЭСМ-6 Ко второму поколению советских компьютеров относятся полупроводниковые малые ЭВМ "Наири" и "Мир", средние ЭВМ для научных расчетов и обработки информации со скоростью 5-30 тысяч операций в секунду "Минск-2", "Минск-22", "Минск-32", "Урал-14", "Раздан-2", "Раздан-3", "БЭСМ-4", "М-220" и управляющие ЭВМ "Днепр", "ВНИИЭМ-3", а также сверхбыстродействующая БЭСМ-6 с производительностью 1 млн операций в секунду.

35 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1958 г. – Джек Килби, Texas Instruments - первая ИС Американец Джек Килби сконструировал первую интегральную схему. Роберт Нойс (основал фирму Intel в 1968 году) – первая промышленная ИС

36 Компьютерные технологии
История развития вычислительной техники, информационных технологий 60-е годы XX века – зарождение компьютерных сетей 1961 г. – МОП - Стивен Хорстейн 1961 г. – IBM электронно-пишущая машина с шариковой печатающей головкой 1963 г. – CDC первый суперкомпьютер

37 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1964 г апреля фирма IBM объявила о создании семейства компьютеров System-360. 7 апреля года фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Это был важнейший шаг к унификации, совместимости и стандартизации компьютеров. Кроме того, число "360" символизировало подлинную универсальность - полный оборот 360 градусов. Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью. При создании моделей семейства использовался ряд новых принципов, что делало машины универсальными и позволяло с одинаковой эффективностью применять их как для решения задач в различных областях науки и техники, так и для обработки данных в сфере управления и бизнеса. IBM System/360 (S/360) — это семейство универсальных компьютеров класса мейнфреймов. Дальнейшим развитием IBM/360 стали системы 370, 390, z9 и zSeries. В СССР IBM/360 была клонирована под названием ЕС ЭВМ. Они были программно совместимы со своими американскими прообразами. Это давало возможность использовать западное программное обеспечение в условиях неразвитости отечественной "индустрии программирования".

38 Компьютерные технологии
История развития вычислительной техники, информационных технологий 1964 г. Накопитель на магнитных дисках и машина IBM-360 Компьютеры третьего поколения на интегральных микросхемах появились в СССР во второй половине 1960-х годов. Были разработаны Единая Система ЭВМ (ЕС ЭВМ) и Система Малых ЭВМ (СМ ЭВМ) и организовано их серийное производство. Как уже указывалось выше, эта система представляла собой клон американской системы IBM/360. Евгений Алексеевич Лебедев был ярым противником начавшегося в 1970-е годы копирования американской системы IBM|360, которая в советском варианте носила название ЕС ЭВМ. Роль ЕС ЭВМ в развитии отечественных компьютеров неоднозначна. На начальном этапе появление ЕС ЭВМ привело к унификации компьютерных систем, позволило установить начальные стандарты программирования и организовывать широкомасштабные проекты, связанные с внедрением программ. Ценой этого было повсеместное свёртывание собственных оригинальных разработок и попадание в полную зависимость от идей и концепций фирмы IBM, далеко не самых лучших по тому времени. Резкий переход от простых в эксплуатации советских машин к намного более сложным аппаратным и программным средствам IBM/360 привёл к тому, что многие программисты должны были преодолевать трудности, связанные с недоделками и ошибками IBM-ских разработчиков. Начальные модели ЕС ЭВМ по эксплуатационным характеристикам нередко уступали отечественным компьютерам того времени. На позднем этапе, особенно в 80-е, повсеместное внедрение ЕС ЭВМ превратилось в серьёзный тормоз для развития программного обеспечения, баз данных, диалоговых систем. После дорогостоящих и заранее спланированных закупок предприятия были вынуждены эксплуатировать морально устаревшие компьютерные системы. Параллельно развивались системы на малых машинах и на персональных компьютерах, которые становились всё более и более популярны. Первый в истории вычислительной техники накопитель на жестких магнитных дисках (винчестер-winchester) разработала в 1956 году группа инженеров IBM под руководством Рейнольда Б. Джонсона. Устройство носило название 305 RAMAC - контрольно-считывающее устройство по методу случайного доступа (Random Access Method of Accounting and Control). Накопитель состоял из 50 алюминиевых дисков диаметром 24 дюйма (около 60 см) при толщине 2,5 см каждый. На поверхность алюминиевой пластины наносился магнитный слой, на который и осуществлялась запись. Вся эта конструкция из дисков на общей оси в рабочем режиме вращалась с постоянной скоростью 1200 об/мин, а сам накопитель занимал площадку размерами 3х3,5 м. Суммарная емкость его составляла 5 Мb. Одним из важнейших принципов, использованных в конструкции RAMAC 305, явилось то, что головки не прикасались к поверхности дисков, а зависали на малом фиксированном расстоянии. Для этого использовались специальные воздушные сопла, которые направляли поток к диску через маленькие отверстия в держателях головок и тем самым создавали зазор между головкой и поверхностью вращающейся пластины. Винчестер (жесткий диск) обеспечил компьютерных пользователей возможностью хранить очень большие объемы информации и при этом быстро извлекать нужные данные. После создания винчестера в 1958 году от носителей на магнитных лентах отказались.

39 Компьютерные технологии
История развития вычислительной техники, информационных технологий Май 1964 г. – Dartmouth College (1 программа на Basic)


Download ppt "Компьютерные технологии"

Similar presentations


Ads by Google