Presentation is loading. Please wait.

Presentation is loading. Please wait.

Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7 th 2011.

Similar presentations


Presentation on theme: "Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7 th 2011."— Presentation transcript:

1 Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7 th 2011

2 Isotopic composition [ACE] Solar Modulation [PAMELA,ULYSSES] Antimatter Dark Matter [BESS, PAMELA, AMS] Elemental Composition [CREAM, ATIC, TRACER, NUCLEON, CALET, GAMMA-400?] Extreme Energy CR [AUGER, EUSO, TUS/KLYPVE, OWL??]

3 PAMELA Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

4 PAMELA Collaboration Moscow St. Petersburg Russia: Sweden: KTH, Stockholm Germany: Siegen Italy: BariFlorenceFrascatiTriesteNaplesRome CNR, Florence

5 PAMELA Instrument GF ~21.5 cmsr GF ~21.5 cm 2 sr Mass: 470 kg Size: 130x70x70 cm Size: 130x70x70 cm 3

6 Mirko Boezio, IDDDM, Aspen, 2011/02/07

7 Design Performance Energy range Antiprotons 80 MeV - 190 GeV Positrons 50 MeV – 300 GeV Electrons up to 800 GeV Protons up to 1 TeV Helium up to 400 GeV/n Electrons+positrons up to 2 TeV ( by calorimeter) Light Nuclei (Li/Be/B/C) up to 200 GeV/n AntiNuclei search sensitivity of 3x10 -8 in He/He Mirko Boezio, IDDDM, Aspen, 2011/02/07

8 PAMELA Launch 15/06/06 16 Gigabytes trasmitted daily to Ground NTsOMZ Moscow

9 Orbit Characteristics    km  km SAA Low-earth elliptical orbit 350 – 610 km Quasi-polar (70 o inclination) SAA crossed Mirko Boezio, IDDDM, Aspen, 2011/02/07

10 Download @orbit 3754 – 15/02/2007 07:35:00 MWT S1 S2 S3 orbit 3752 orbit 3753 orbit 3751 NP SP EQ EQ 95 min Outer radiation belt Inner radiation belt (SSA)‏

11 Subcutoff particles Mirko Boezio, IDDDM, Aspen, 2011/02/07

12 Main antenna in NTsOMZ Launch from Baikonur  June 15 th 2006, 0800 UTC. ‘First light’  June 21 st 2006, 0300 UTC. Detectors operated as expected after launch Different trigger and hardware configurations evaluated  PAMELA in continuous data-taking mode since commissioning phase ended on July 11 th 2006 Trigger rate* ~25Hz Fraction of live time* ~ 75% Event size (compressed mode) ~5kB 25 Hz x 5 kB/ev  ~ 10 GB/day (*outside radiation belts) Till ~now: ~1400 days of data taking ~20 TByte of raw data downlinked >2x10 9 triggers recorded and analyzed PAMELA milestones

13 Scientific goals Search for dark matter annihilation Search for antihelium (primordial antimatter) Search for new Matter in the Universe (Strangelets?) Study of cosmic-ray propagation (light nuclei and isotopes) Study of electron spectrum (local sources?) Study solar physics and solar modulation Study terrestrial magnetosphere

14 Dark Matter Mirko Boezio, IDDDM, Aspen, 2011/02/07 Indirect Detection

15 DM annihilations DM particles are stable. They can annihilate in pairs. Primary annihilation channels Decay Final states σ= σ a =

16

17 Particle ID with PAMELA Mirko Boezio, IDDDM, Aspen, 2011/02/07

18 Flight data: 0.169 GV electron Flight data: 0.171 GV positron

19 Flight data: 0.763 GeV/c antiproton annihilation

20 Bending in spectrometer: sign of charge Ionisation energy loss (dE/dx): magnitude of charge Interaction pattern in calorimeter: electron-like or proton-like, electron energy Time-of-flight: trigger, albedo rejection, mass determination (up to 1 GeV) Positron (NB: p/e + ~10 3-4 ) Antiproton (NB: e - /p ~ 10 2 ) Antiproton / Positron Identification

21 Flight data: 14.7 GV Interacting nucleus (Z = 8)‏

22 Antiproton to proton ratio (0.06 GeV - 180 GeV) Donato et al. (PRL 102 (2009) 071301) Simon et al. (ApJ 499 (1998) 250)Ptuskin et al. (ApJ 642 (2006) 902) PRL 102, 051101 (2009) and PRL. 105, 121101 (2010)

23 Antiproton Flux (0.06 GeV - 180 GeV) Donato et al. (ApJ 563 (2001) 172) Ptuskin et al. (ApJ 642 (2006) 902) PRL. 105, 121101 (2010) Systematics errors included

24 Antiprotons inside SAA Galactic Antiprotons Antiprotons below cutoff at equator Galactic antiprotons PAMELA trapped antiprotons Preliminary Mirko Boezio, IDDDM, Aspen, 2011/02/07

25 Positron to Electron Fraction Secondary production Moskalenko & Strong 98 Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE]

26 But antiprotons in CRs are in agreement with secondary production Uncertainties on: Secondary production (primary fluxes, cross section) Propagation models Electron spectrum A Challenging Puzzle for CR Physics

27 P.Blasi, PRL 103 (2009) 051104; arXiv:0903.2794 Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated. I. Cholis et al., Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1 Contribution from DM annihilation. D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527 Contribution from diffuse mature &nearby young pulsars.

28 G. Kane, R. Lu, and S. Watson, Phys.Lett.B681, 151 (2009); arXiv:0906.4765 v3 A Challenging Puzzle for CR Physics T. Delahaye et al., A&A 501, 821(2009); arXiv: 0809.5268v3

29 Cosmic Ray Spectra Cosmic-Ray Acceleration and Propagation in the Galaxy Mirko Boezio, IDDDM, Aspen, 2011/02/07

30 Diffusion Halo Model Mirko Boezio, IDDDM, Aspen, 2011/02/07

31 PAMELA

32 Proton and Helium Nuclei Spectra Mirko Boezio, IDDDM, Aspen, 2011/02/07

33 Proton and Helium Nuclei Spectra GALPROP Mirko Boezio, IDDDM, Aspen, 2011/02/07

34 Proton and Helium Nuclei Spectra Mirko Boezio, IDDDM, Aspen, 2011/02/07

35 Boron and Carbon nuclei Spectra Carbon Boron Mirko Boezio, IDDDM, Aspen, 2011/02/07

36 0.9 GV < R < 1 GV p d H isotopes separation Mirko Boezio, IDDDM, Aspen, 2011/02/07

37 Positrons detection Where do positrons come from? Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton Typical lifetime

38 PAMELA electron (e - ) spectrum e + + e - e-e- Mirko Boezio, IDDDM, Aspen, 2011/02/07

39 PAMELA electron (e - ) spectrum Preliminary Tracker based Calorimeter based Mirko Boezio, IDDDM, Aspen, 2011/02/07

40 Theoretical uncertainties on “standard” positron fraction T. Delahaye et al., arXiv: 0809.5268v3 γ = 3.54γ = 3.34 Flux=A E - 

41 PAMELA electron (e - ) spectrum Flux=A E -   = 3.18 ±0.05 GALPROP prediction from e - flux Mirko Boezio, IDDDM, Aspen, 2011/02/07 “New Primary Contribution”

42 Independently to the fit of the electron spectra, we also perform a χ 2 comparison between the expected positron fraction from GALPROP simulation and PAMELA measurement of the positron fraction. Confidence level, in parameter space (  2 ; ϕ 0 ) obtained from a fit of the electron spectra ( red ) and of the positron fraction ( green ). Cruces show the best-fit combination. Interestingly, the best fit value for the two independent fit are very similar. Preliminary positron fraction electron spectrum Fit of electron spectrum 90% 95% 99% Mirko Boezio, IDDDM, Aspen, 2011/02/07

43 Solar Modulation Mirko Boezio, IDDDM, Aspen, 2011/02/07

44 Positron to Electron Fraction Secondary production Moskalenko & Strong 98 Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE] Solar Modulation?

45 Solar Modulation of Galactic Cosmic Rays Courtesy of M. Potgieter PAMELA

46 Preliminary Time Dependence of PAMELA Proton Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07

47 Preliminary Time Dependence of PAMELA Proton Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07

48 Preliminary Time Dependence of PAMELA Electron (e - ) Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07

49 Preliminary Time Dependence of PAMELA Electron (e - ) Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07

50 Flux variation as a function of time for rigidities between 0.72 and 1.04 GV Time Dependence Preliminary

51 Increase of the flux measured by PAMELA from July 2006 to December 2008 Time Dependence Preliminary

52 U.W. Langner, M.S. Potgieter, Advances in Space Research 34 (2004). PAMELA Electron to Positron Ratio and Theoretical Models Preliminary

53 Summary PAMELA Results Mirko Boezio, IDDDM, Aspen, 2011/02/07 PAMELA Data

54 Summary PAMELA has been in orbit and studying cosmic rays for ~4.5 years. >10 9 triggers registered and >19 TB of data has been down-linked. Antiproton-to-proton flux ratio and antiproton energy spectrum (~100 MeV - ~200 GeV) show no significant deviations from secondary production expectations. High energy positron fraction (>10 GeV) increases significantly (and unexpectedly!) with energy. Primary source? The proton and helium nuclei spectra have been measured up to 1.2 TV. The observations challenge the current paradigm of cosmic ray acceleration and propagation. The e - spectrum up to 600 GeV shows spectral features that may point to additional components. Analysis ongoing to finalize the antiparticle measurements (positron flux, positron fraction), continuous study of solar modulation effects at low energy. Waiting for AMS to compare contemporary measurements. Mirko Boezio, IDDDM, Aspen, 2011/02/07

55 AMS-02 on ISS In Orbit April 2011 TRD RICH Vacuum Case Tracker MAGNET He Vessel

56 The Completed AMS Detector on ISS Transition Radiation Detector (TRD) Silicon Tracker Electromagnetic Calorimeter (ECAL) Magnet Ring Image Cerenkov Counter (RICH) Time of Flight Detector (TOF) Size: 3m x 3m x 3m Weight: 7 tons

57 AMS-02 new configuration

58

59 AMS S.C. Magnet: MDR 2.18 TV AMS Perm. Magnet: MDR 2.14 TV

60 AMS Capability Space Part 2006

61 Mirko Boezio, IDDDM, Aspen, 2011/02/07


Download ppt "Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7 th 2011."

Similar presentations


Ads by Google