Presentation is loading. Please wait.

Presentation is loading. Please wait.

Imaging Science FundamentalsChester F. Carlson Center for Imaging Science The Geometric Optics of Image Formation.

Similar presentations


Presentation on theme: "Imaging Science FundamentalsChester F. Carlson Center for Imaging Science The Geometric Optics of Image Formation."— Presentation transcript:

1 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science The Geometric Optics of Image Formation

2 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science (I) Clear Materials Bend Rays Light bending is called "refraction". Water ray where a straight ray would come from. where the ray really comes from. Air

3 Imaging Science FundamentalsChester F. Carlson Center for Imaging ScienceRefraction Water n is low The amount of bending depends on a property of the material called "index of refraction", n. Glass n is high

4 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s VacuumRefraction

5 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s “wavefronts”Refraction

6 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s “wavefronts” separated by one wavelengthRefraction

7 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

8 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

9 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

10 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

11 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

12 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

13 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

14 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/sRefraction

15 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Velocity in other media is less than c: Mediumvelocity vacuum 3 x 10 8 m/s air 2.999 x 10 8 m/s water 2.26 x 10 8 m/s glass 2 x 10 8 m/s diamond 1.25 x 10 8 m/s Index of refraction

16 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science The index of refraction, n, of a medium is defined as the ratio of the speed of light in a vacuum to the speed in that medium: n = c/v Mediumvelocityn vacuum 3 x 10 8 m/s1 air 2.999 x 10 8 m/s1.0003 water 2.26 x 10 8 m/s1.33 glass 2 x 10 8 m/s1.5 diamond 1.25 x 10 8 m/s2.4 Index of refraction

17 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

18 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

19 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

20 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

21 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

22 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

23 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

24 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s The velocity of light in a vacuum is a fundamental constant: c = 3 x 10 8 m/s Glass: V = 200,000,000 m/sRefraction

25 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Vacuum V = 300,000,000 m/s Glass: V = 200,000,000 m/s

26 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Refraction for Different Materials  AIR WATER GLASS DIAMOND    light

27 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science MaterialIndex of Refraction, n Vacuum 1 (exactly) Air 1.0003 (approximately 1.000) Water 1.33 Glass 1.5 Diamond 2.4 11 22 n1n1 n2n2 Material #2 Material #1 Snell’s Law: n 1 sin  1 = n 2 sin  2 Examples

28 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Snell’s Law: The equations Snell’s Law: n 1 sin  1 = n 2 sin  2 Define n = 1 for a vacuum All other values of n are >1. 11 22 n1n1 n2n2 Material #2 Material #1

29 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Snell’s Law: n 1 sin  1 = n 2 sin  2 It works exactly the same in reverse. MaterialIndex of Refraction, n Vacuum 1 (exactly) Air 1.0003 (approximately 1.000) Water 1.33 Glass 1.5 Diamond 2.4 11 22 n1n1 n2n2 Material #2 Material #1

30 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Into and out of a flat plate of glass. Air, n 1 = 1.00 Glass n 2 = 1.5 Air, n 3 = 1.00 11 22 33 44 n 1 sin  1 = n 2 sin  2 n 3 sin  3 = n 4 sin  4

31 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science It can be shown that Air, n 1 = 1.00 Glass n 2 = 1.5 Air, n 3 = 1.00 11 22 33 44  1 =  4  2 =  3 and the input and output rays are parallel.

32 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Using Refraction to Focus Light. Glass Lens in Air n 1 =1 n 2 =1.5 Parallel Rays Focal point of lens Focal length of lens, f Optical Axis

33 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Glass Lens in Air n 1 =1 n 2 =1.5 Parallel Rays different direction Image Plane Parallel rays come to focus at one point on the image plane. Focal length of lens, f Optical Axis

34 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science A Chief Ray is a ray heading toward or away from the center of the lens. Glass Lens in Air n 1 =1 n 2 =1.5 Focal length of lens, f Examples of Chief Rays Optical Axis

35 Imaging Science FundamentalsChester F. Carlson Center for Imaging Science Thin Lens Approximation: Chief Rays pass through the lens without deviation. Glass Lens in Air n 1 =1 n 2 =1.5 Focal length of lens, f Examples of Chief Rays Optical Axis


Download ppt "Imaging Science FundamentalsChester F. Carlson Center for Imaging Science The Geometric Optics of Image Formation."

Similar presentations


Ads by Google