Presentation is loading. Please wait.

Presentation is loading. Please wait.

Representing scientific databases online andrew markwick jodrell bank centre for astrophysics university of manchester, UK

Similar presentations


Presentation on theme: "Representing scientific databases online andrew markwick jodrell bank centre for astrophysics university of manchester, UK"— Presentation transcript:

1 representing scientific databases online andrew markwick jodrell bank centre for astrophysics university of manchester, UK andrew.markwick@manchester.ac.uk

2 motivation projects issues with online

3

4

5

6

7 design simple, intuitive maintain and distribute query by species, reaction provide reference data and history technology PHP/MySQL HTML, css, javascript

8

9 ‘sfv2’ w/ JC

10 design interactive save repetition of work community-led and extensible technology PHP/MySQL HTML, css, javascript Flash, xml

11 ‘spectral line catalogue’ on the shoulders of giants w/ A. Remijan

12 curl http://find.nrao.edu/splata-slap/slap?REQUEST=queryData&WAVELENGTH=0.00260075/0.00260080http://find.nrao.edu/splata-slap/slap?REQUEST=queryData&WAVELENGTH=0.00260075/0.00260080 http://www.w3.org/2001/XMLSchema-instance Splatalogue SLAP Service small description identifying the line the name of the line catalog this entry was drawn from the wavelength in the vacuum of the transition originating the line The molecular formula which may include notation of the common quantum state of the transition The molecular formula which may include notation of the common quantum state of the transition The type of molecular given as an integer identifier an integer flag indicating whether this record provides the recommended frequency for this line. The initial and final quantum number states that produces this line a description of the spectral line online is more than the web TM

13 JPL: CH2OHCOCH2OH v29=1 65(10,55)-65( 9,56) JPL 0.0026007993198247656 115269.3542 CH2OHCOCH2OH v29=1 0 65(10,55)-65( 9,56) JPL: NH2CO2CH3 v=1 9( 4, 6)- 8( 3, 6) E JPL 0.00260079801795189 115269.4119 NH2CO2CH3 v=1 0 9( 4, 6)- 8( 3, 6) E JPL: NH2CO2CH3 v=1 9( 4, 6)- 8( 3, 6) E JPL 0.002600797618590801 115269.4296 NH2CO2CH3 v=1 0 9( 4, 6)- 8( 3, 6) E JPL: (CH3)2CO v=0 54(33,21)-54(32,22) EE JPL 0.0026007950374124845 115269.544 (CH3)2CO v=0 1 1 54(33,21)-54(32,22) EE JPL: cis-CH2OHCHO v=1 14( 2,13)-14( 1,14) JPL 0.0026007933722844356 115269.6178 cis-CH2OHCHO v=1 0 14( 2,13)-14( 1,14) JPL: C3H8 N/A JPL 0.0026007911904735396 115269.7145 C3H8 0 N/A JPL: C3H8 N/A JPL 0.0026007911882172737 115269.7146 C3H8 0 N/A JPL: NH2CO2CH3 v=1 23(20, 3)-24(19, 5) E JPL 0.002600789356130706 115269.7958 NH2CO2CH3 v=1 0 23(20, 3)-24(19, 5) E JPL: C3H8 N/A JPL 0.0026007859830224104 115269.9453 C3H8 0 N/A JPL: NH2CO2CH3 v=1 23(20, 3)-24(19, 5) E JPL 0.0026007822579477637 115270.1104 NH2CO2CH3 v=1 0 23(20, 3)-24(19, 5) E JPL: NH2CO2CH3 v=1 23(20, 3)-24(19, 5) E JPL 0.002600781919510257 115270.1254 NH2CO2CH3 v=1 0 23(20, 3)-24(19, 5) E JPL: C3H8 N/A JPL 0.002600780777848383 115270.176 C3H8 0 N/A JPL: C2H5OOCH-trans 21( 9,12)-20( 9,11) JPL 0.0026007731630344477 115270.5135 C2H5OOCH- trans 0 21( 9,12)-20( 9,11) JPL: C2H5OOCH-trans 21( 9,13)-20( 9,12) JPL 0.0026007731630344477 115270.5135 C2H5OOCH- trans 0 21( 9,13)-20( 9,12) JPL: NH2CH2CH2OH v26=1 18( 4,14)-17( 5,13) JPL 0.002600759664053141 115271.1118 NH2CH2CH2OH v26=1 0 18( 4,14)-17( 5,13) CDMS: CO v=0 1-0 CDMS 0.0026007576334647012 115271.2018 CO v=0 1 1- 0 JPL: CO v=0 1-0 JPL 0.0026007576334647012 115271.2018 CO v=0 1 1-0 Lovas/NIST: CO v=0 1-0 Lovas/NIST 0.002600757628952286 115271.202 CO v=0 1 1- 0 SLAIM: CO v=0 1- 0 SLAIM 0.002600757628952286 115271.202 CO v=0 1 1 1- 0 CDMS: FeCO N=14-13, J=13- 12 CDMS 0.0026007539084712634 115271.3669 FeCO 0 N=14-13, J=13-12 CDMS: CH3CHNH2COOH - I 29(11,18)-29( 8,21) CDMS 0.002600753536198126 115271.3834 CH3CHNH2COOH - I 0 29(11,18)-29( 8,21) VOTABLE as in ‘Virtual Observatory’

14 ALMA Observing Tool ALMA, Chile, artist’s impression ALMA – the Atacama Large Millimetre Array

15 ALMA ‘OT’ – Observing Tool

16 design ALMA–OT – flat & queryable machine readable one-stop for astronomical spectroscopy update of (famous) Lovas list technology PHP/MySQL, xml

17 why go ‘online’? web is world’s #1 information source = visibility = accessibility and not just to your colleagues

18 use how is your data(base) used? usage can drive development examples

19

20 q. What is the most common molecule searched for in udfa? a. H 3 +

21

22 q. What is the most common molecule searched for that is not in udfa? a. glycine

23

24 q. Spectra from which molecules have been plotted the most times in sfv2? (i.e. since Feb. 2006) a. H 2 O, C 2 H 2, CO 2, TiO, HCN, …

25

26 use.. or you can let users drive content directly e.g. sfv2 requests usage may influence funding bodies

27 abuse users: will find errors and inconsistencies (but this is good) will misuse data and your service (so don’t expose yourself too much, and do have lots of validation) users rarely read documentation

28 idealism vs. practicality idealism where are you?practicality ‘standards’ beautiful, detailed, generic, unambiguous data model vs. what works for you and/or your user? [heresy] is xml best? just give people what they want

29 serve data machine readable custom format key / service

30 two worlds collide publishing in traditional print journals funding online is dynamic - how to reference?

31

32 issues online is lots of work (to do properly) you can’t just publish and forget (bizarrely) there is opposition

33 some ideas worth considering don’t expose your underlying data model (or at least be v. careful) limits some abuses protects against (your own) changes

34 some ideas worth considering be aware of technology you and your users depend on keep your own statistics give people what they want!


Download ppt "Representing scientific databases online andrew markwick jodrell bank centre for astrophysics university of manchester, UK"

Similar presentations


Ads by Google