Download presentation
Presentation is loading. Please wait.
1
2000/03/051 This presentation will probably involve audience discussion, which will create action items. Use PowerPoint to keep track of these action items during your presentation In Slide Show, click on the right mouse button Select “Meeting Minder” Select the “Action Items” tab Type in action items as they come up Click OK to dismiss this box This will automatically create an Action Item slide at the end of your presentation with your points entered. Processor Requirements needed to optimize DSP performance M. R. Smith, Electrical and Computer Engineering, University of Calgary, Alberta, Canada smithmr @ ucalgary.ca
2
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 2 / 34 To be tackled today Characteristics of DSP algorithms Specialized handling of Multiplication Division (21K has no division instruction) ENCM515 Reference Material How RISCy Is DSP, IEEE Micro (Jan-10) Simply Signal Processing (Jan-40) Fast Scaling, CCI (Apr-10) Saturation Arithmetic (Apr-20)
3
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 3 / 34 DSP Algorithms DSP algorithms require specialized features on processors Processors are a compromise speed, cost, silicon When have you as a designer found a compromise that meets your requirements? As a consultant may have to add DSP characteristics to an existing system or add DSP coprocessor to an existing system
4
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 4 / 34 FIR Multiply/Addition intensive Sum operation with high precision -- overflow considerations Long simple loop Online operation -- “infinite” amount of data Store coefficients on-chip for fast access Complex domain arithmetic
5
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 5 / 34 IIR-1 Interrelated and order dependent multiplications and additions Small number of delays via register moves? short loop -- low number of instructions in loop which makes it difficult to optimize Precision -- very important because of feedback Multiple stages -- I.e. IIR follows IIR etc
6
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 6 / 34 IIR-2 LDI Short complicated loop Many intermediate values Pipeline issues because of interdependence
7
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 7 / 34 FFT Complex variables (A and B) and fixed coefficients (W) Address calculations complex Memory accesses numerable Multiplication and additions Need for fast access to many registers, address pointers, constants, variables
8
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 8 / 34 Fast instruction cycle -- needed DSP chips -- two cycle instructions (on top of FETCH/DECODE) during which the processor performs many parallel operations More recent technology -- 1 clock cycle Many processors takes 6 to 32 cycles to handle MULT, FMULT, FDIV or even FADD Make processor highly pipelined -- pipeline must be started and then kept full FIR (easy to pipeline) IIR (hard to pipeline) FFT (challenging to pipeline)
9
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 9 / 34 Loop Overhead -- must be minimized Use specialized hardware specialized decrement and branch instructions occurring in a single cycle instruction cached with counter superscalar operations delayed branches hardware loop control Use specialized software techniques loop unrolling down counting loops
10
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 10 / 34 Memory operations -- Many of them Data/instruction and data/data conflicts Data caches Will also have external data memory banks Harvard architecture branch target caches multi-ported memory register pre-forwarding -- avoid stalls while trying to write back result of ALU operation only to re-- access the same register large register banks -- avoid memory ops associated with just calculated values
11
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 11 / 34 Precision -- high but without speed loss FIR -- accumulated value can grow big IIR -- recursive use of a value External Memory bus width Internal Memory bus width Data width of registers and ALU Saturation arithmetic
12
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 12 / 34 Saturation Arithmetic For full discussion see 21K SHARC user manual and also “Being Assertive with your processor” (APR-20) Internal register 80 bits but external busses only 32 wide 0xFFFF F0000001 00000000 stored as F0000001 0xFFFF 00000001 00000000 stored as 00000001 (normal math) stored as 80000000 (saturation) Can be good solution (FIR) or bad solution (IIR) to the problem of overflow
13
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 13 / 34 Complex arithmetic -- frequency domain operations Need to fetch real and imaginary parts in at different times during the algorithm Need fast access to adjacent memory locations -- burst memory Need for many internal registers to temporarily store real/imaginary components (FFT butterfly and last years exams) Duplication of resources -- was custom, but consider now TigerSHARC
14
2000/03/0514 DAG 2 8 x 4 x 32 DAG 1 8 x 4 x 32 CACHE MEMORY 32 x 48 PROGRAM SEQUENCER PMD BUS DMD BUS 32 PMA BUS PMD DMD PMA 32DMA BUS DMA 64 JTAG TEST & EMULATION FLAGS TIMER Alternate Core Architecture BUS CONNECT FLOATING & FIXED- POINT MULTIPLIER, FIXED-POINT ACCUMULATOR REGISTER FILE 16 x 40 32-BIT BARREL SHIFTER FLOATING-POINT &FIXED-POINT ALU FLOATING & FIXED- POINT MULTIPLIER, FIXED-POINT ACCUMULATOR REGISTER FILE 16 x 40 32-BIT BARREL SHIFTER FLOATING-POINT &FIXED-POINT ALU
15
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 15 / 34
16
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 16 / 34 Address calculations -- frequent Complex addressing modes -- take many clock cycles Use pointers and autoincrement rather than calculating pointer + offset need many address-related registers address calculations compete with ALU calculations group instructions within program e.g. read and store often use same or similar addresses so don’t recalculate the addresses.
17
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 17 / 34 Specialized addressing modes standard memory access premodify postmodify circular buffers (modulo arithmetic on the address registers) bit-reverse addressing structure handling auto-increment with size accounted for
18
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 18 / 34 Key issue -- ease of development Microcontrollers -- onboard peripherals Host communication Multiprocessor communications Simulators Multi-processor operations Application notes Good working environment Compatibility to previous processor versions -- legacy code (advantage and a disadvantage)
19
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 19 / 34 Multiplication Extensive algorithms Off-chip multipliers have big bottlenecks Get and then give instruction to multiplier Get and then give first, second data to multiplier Wait till cooked, and then get value Newer chips have on-board multiplication or intelligent co-processors (F-LINE exceptions) Many chips do multiplication using specialized techniques introduced by optimizing compiler
20
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 20 / 34 Smart Multiplication through optimizing compiler techniques 29K RISC FMULT execution takes 6 cycles + fetch 16bit x 16bit INTEGER multiplication on 68K CISC takes 70 cycles regardless of operations Use adds and shift instead since these take less time -- easy with integer, but floats? What are equivalent operations on 21K. Discussed in early lecture on Quirks and SHARCs
21
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 21 / 34 Smart Integer 68k Multiplication Multiplication by 2, 4, 8, 16 Achieved by shifting 1, 2, 3 or 4 times (done in 6 + 2n operations on 68K) D2 = D0 * 19 MOVE.W D0, D2 ASL.W #4, D2D2 = D0 * 16 ADD.W D0, D2D2 = D0 * 17 ASL.W #1, D0D0 = D0 *2 ADD.W D0, D2 D2 = D0 * 19 (29 cycles compared to 70) Watch out for overflow, may need conversion to 32 bits (SSI, SSF on some processssors -- not only 21k) Waste of time if have single cycle multipliers (21k?). Careful because multiplication results may end in special register.
22
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 22 / 34 Multiplication Extensive algorithms Highly pipelined, therefore complex instruction interdependence R0 = R1 * R2BUTR0 = R1 * R2 R3 = R4 * R5R3 = R0 * R5 <- delay dependency Need automated tools to schedule instructions Need multiple destinations (registers) for multiplier result Multiple and Accumulate (MAC) instruction Super-scalar operations even on a simpler processor Cause problems in short loops Many types of MACs needed Not all processors have the 21061 single cycle multiplication operation See “In the AM29050 a FIR-bearing animal” (FEB-80 in class notes))
23
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 23 / 34 Typically need “Normalization” of result N point DFT Result = DFT (Input) ; 0 <= n < N N point inverse DFT Result = IDFT (Input) / N ; 0 <= n < N Division is typically done by the equivalent of repeated subtraction -- 150 cycles on 68K result = 0; do { Numerator = Numerator - Denom; result++; } while (Numerator > 0); result--; Special shift-subtract tricks speed operations
24
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 24 / 34 Smart Integer Division Division by 2, 4, 8, 16 unsigned signed LSL #1, D0ASL #1, D0 Need to propagate (or not propagate) the sign bit Unsigned original = 0x80 (128) final = 0x40 (64) Signed original = 0x80 ( - 128) final = 0xC0 ( - 64)
25
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 25 / 34 Floating Point Division There is not a FDIV on the 21K -- use recursion!!
26
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 26 / 34 Processors compared IEEE Micro Magazine Special Feature 1992 DSP TMS320C25, 030 DSP56000/1, DSP96002 (Motorola) RISC i860 (Intel) MC88100 (Motorola) SPARC (Sparc Consortium NOT Sun) Am29050 Ideal -- SMITH CRISP
27
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 27 / 34 CRISP -- triple pun as well Comprehensive RISC -- Predicted 1992 Harvard architecture MAC (rather than Super -- Scalar instructions) Ability to do X = R+S, Y = R-S operations many registers for address/values FP as well as integer capability Bit-reverse addressing Peripherals with DMA Low power standby High precision -- double precision Efficient pipeline with parallel completion of many operations (dual-ported memory and register banks)
28
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 28 / 34 Comparisons -- 1
29
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 29 / 34 FIR/IIR
30
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 30 / 34 FFT -- Radix 2 and Radix 4
31
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 31 / 34 Requirements for “perfect” DSP Fast instruction cycle -- different from high clock speed Cycle time adjustable according to instruction type Fast hardware multiplier Floating point for easier algorithm design High precision, implying wide data buses for memory, internal processor transfers, registers and on-board processing units
32
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 32 / 34 Requirements for “perfect” DSP Several data buses available to reduce bus conflict transfer overhead Harvard architecture and/or instruction cache to avoid instruction and data-fetch clashes Duplicate resources for parallel computation of real and imaginary components of complex numbers Dedicated hardware required for address calculations to avoid APU clash with main algorithm
33
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 33 / 34 Requirements for “perfect” DSP Extensive temporary registers to reduce unwanted fetches of continually used data Or single cycle, highly parallel, memory operations Fast and reliable, easily programmed, developed and upgraded Inexpensive and easy to develop peripherals High level of customer support Inexpensive to purchase Lower power consumption with a standby mode
34
2000/03/05 ENCM515 -- Characteristics needed in DSP processors Copyright smithmr@ucalgary.ca 34 / 34 Tackled today Characteristics of DSP algorithms Specialized handling of Multiplication Division (21K has no division instruction) ENCM515 Reference Material How RISCy Is DSP, IEEE Micro (Jan-10) Simply Signal Processing (Jan-40) Saturation Arithmetic (Apr-20)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.