Download presentation
Presentation is loading. Please wait.
1
Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires
2
Colaboradores-Referencias Colaborators Gustavo Murgida (UBA) Pablo Tamborenea (UBA) Short version ---> PRL 07, cond-mat/0703192 APS ICCMSE
3
Outline Introduction The system: quasi-one-dimensional quantum dot with 2 e inside Landau- Zener transitions in our system The method: traveling in the spectra Results Final Remarks
4
Introduction
6
Desired state
7
Introduction Desired state
8
Introduction Main idea of our work
9
Introduction Main idea of our work To travel in the spectra of eigenenergies
10
Introduction Main idea of our work To travel in the spectra of eigenenergies
11
Introduction Main idea of our work To travel in the spectra of eigenenergies Control parameter
12
Introduction Main idea of our work To travel in the spectra of eigenenergies Control parameter
13
Introduction Main idea of our work To travel in the spectra of eigenenergies Control parameter
14
Introduction Main idea of our work To travel in the spectra of eigenenergies Control parameter
15
Introduction Main idea of our work To travel in the spectra of eigenenergies Control parameter
16
Introduction To navigate the spectra
17
Introduction To navigate the spectra
18
Introduction To navigate the spectra
19
Introduction To navigate the spectra
20
The system Quasi-one-dimensional quantum dot:
21
The system Quasi-one-dimensional quantum dot: Confining potential: doble quantum well filled with 2 e
22
The system Quasi-one-dimensional quantum dot: Confining potential: doble quantum well filled with 2 e
23
The system Quasi-one-dimensional quantum dot: Confining potential: doble quantum well filled with 2 e
24
Colaboradores-Referencias The system Time dependent electric field Coulombian interaction The Hamiltonian of the system: Note: no spin term-we assume total spin wavefunction: singlet
25
The system PRE 01 Fendrik, Sanchez,Tamborenea Interaction induce chaos Nearest neighbor spacing distribution System: 1 well, 2 e
26
Colaboradores-Referencias The system We solve numerically the time independent Schroeringer eq. Electric field is considered as a parameter Characteristics of the spectrum (eigenfunctions and eigenvalues)
27
The system Spectra
28
The system Spectra lines
29
The system Spectra lines Avoided crossings
30
Colaboradores-Referencias The system Cero slope delocalized Positive slope e¯ in the right dot Negative slope e¯ in the left dot
31
Landau-Zener transitions in our model LZ model
32
Landau-Zener transitions in our model LZ model Linear functions
33
Landau-Zener transitions in our model LZ model Linear functions hyperbolas
34
Landau-Zener transitions in our model LZ model Probability to remain in the state 1 Probability to jump to the state 2 if
35
Landau-Zener transitions in our model LZ model Adibatic transitions Diabatic transitions
36
Colaboradores-Referencias Landau-Zener transitions in our model We study the prob. transition in several ac. For example:
37
Colaboradores-Referencias Landau-Zener transitions in our model We study the prob. transition in several ac. For example:
38
Colaboradores-Referencias Landau-Zener transitions in our model E(t) We study the prob. transition in several ac. For example: Full system 2 level system LZ prediction
39
Colaboradores-Referencias Landau-Zener transitions in our model We study the prob. transition in several ac. For example: Full system 2 level system
40
The method: navigating the spectrum We use adiabatic and rapid transitions to travel in the spectra Choose the initial state and the desired final state in the spectra Find a path in the spectra Avoid adiabatic transitions in very small avoided crossings If it is posible try to make slow variations of the parameter
41
Results First example: localization of the e¯ in the left dot
42
Results First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method) LL
43
Results First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method)
44
Colaboradores-Referencias Results Second example: complex path
45
Colaboradores-Referencias Results Second example: complex path
46
Colaboradores-Referencias Results Second example: complex path
47
Colaboradores-Referencias Results Second example: complex path
48
Colaboradores-Referencias Results Second example: complex path
49
Colaboradores-Referencias Results Second example: complex path
50
Colaboradores-Referencias Results Second example: complex path
51
Colaboradores-Referencias Results Second example: complex path
52
Colaboradores-Referencias Results Second example: complex path
53
Colaboradores-Referencias Results Second example: complex path
54
Colaboradores-Referencias Results Second example: complex path
55
Colaboradores-Referencias Results Third example: more complex path
56
Results
57
Colaboradores-Referencias Results Forth example: target state a coherent superposition
58
Colaboradores-Referencias Results Forth example: target state a coherent superposition
59
Colaboradores-Referencias Results Forth example: target state a coherent superposition
60
Colaboradores-Referencias Results Forth example: target state a coherent superposition
61
Colaboradores-Referencias Results Forth example: target state a coherent superposition
62
Colaboradores-Referencias Results Forth example: target state a coherent superposition
63
Colaboradores-Referencias Results Forth example: target state a coherent superposition
64
Colaboradores-Referencias Results Forth example: target state a coherent superposition
65
Colaboradores-Referencias The method: questions Is our method generic?
66
Colaboradores-Referencias The method: questions We need well defined avoided crossings Is our method generic?
67
Colaboradores-Referencias The method: questions We need well defined avoided crossings a/R Stadium billiard Is our method generic? LZ transitions Sanchez, Vergini DW PRE 96
68
Colaboradores-Referencias The method: questions We need well defined avoided crossings a/R Stadium billiard Is our method generic? Is our method experimentally possible? LZ transitions Sanchez, Vergini DW PRE 96
69
Colaboradores-Referencias Final Remarks We found a method to control quantum systems Our method works well: With our method it is posible to travel in the spectra of the system We can control several aspects of the wave function (localization of the e¯, etc).
70
Colaboradores-Referencias Final Remarks We can also obtain a combination of adiabatic states Control of chaotic systems Decoherence??? Next step???.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.