Presentation is loading. Please wait.

Presentation is loading. Please wait.

Going beyond a basic ownership system in Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA Joint work with: Peter Müller Angela Wallenburg ESF workshop.

Similar presentations


Presentation on theme: "Going beyond a basic ownership system in Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA Joint work with: Peter Müller Angela Wallenburg ESF workshop."— Presentation transcript:

1 Going beyond a basic ownership system in Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA Joint work with: Peter Müller Angela Wallenburg ESF workshop on Java program verification, Nijmegen, NL, 18 Oct 2006

2 Object invariants 0.Simple objects * 1.Aggregate objects * 2.Immutable types ** 3.Subclasses *** 4.Additive invariants * *)previous work on Boogie methodology **)L+M+W ***)L+W

3 0. When do invariants hold? class Car { int speed; int windResistance; invariant windResistance == K * speed * speed; public Car() { speed = 0; windResistance = 0; } public void SetSpeed(int kmph) { speed = kmph; windResistance = K * speed * speed; }

4 0. When do invariants hold? class Car { int speed; int windResistance; invariant windResistance == K * speed * speed; public Car() { speed = 0; windResistance = 0; } public void SetSpeed(int kmph) { speed = kmph; windResistance = K * speed * speed; }

5 0. When do invariants hold? class Car { int speed; int windResistance; invariant windResistance == K * speed * speed; public Car() { speed = 0; windResistance = 0; } public void SetSpeed(int kmph) { speed = kmph; P( ); windResistance = K * speed * speed; } Invariant temporarily violated —what if P calls back?

6 Object states Mutable Mutable –Object invariant might be violated –Field updates are allowed Valid Valid –Object invariant holds –Field updates not allowed

7 The heap (the object store)

8 Mutable Valid

9 To mutable and back: expose class Car { int speed; int windResistance; invariant windResistance == K * speed * speed; … public void SetSpeed(int kmph) requires this.valid; { expose (this) { speed = kmph; windResistance = K * speed * speed; } } changes this from valid to mutable changes this from mutable to valid can update speed, because this.mutable

10 Summary for simple objects: (  o o.mutable  Inv(o)) x.f = E; check x.mutable invariant … this.f …; o.mutable  ¬ o.valid

11 Summary for simple objects: (  o o.mutable  Inv(o)) expose (x) { … } x.valid := falsex.valid := true check x.validcheck Inv(x) o.mutable  ¬ o.valid

12 1. Aggregate objects class Seat { public void Move(int pos) requires this.valid; … } class Car { Seat s; public void Adjust(Profile p) requires this.valid  p.valid; { s.Move(p.SeatPosition); }

13 Ownership Points to owner

14 Ownership domains Points to owner

15 Ownership domains Points to owner x y z x owns y and z y and z are components in the representation of x y and z are peers

16 Points to owner Mutable object Valid object An object is only as valid as its components

17 Representation (rep) fields class Seat { public void Move(int pos) requires this.Consistent; … } class Car { rep Seat s; public void Adjust(Profile p) requires this.Consistent  p.Consistent; { expose (this) { s.Move(p.SeatPosition); } } o.Consistent  o.owner.mutable  o.valid

18 Peer fields and peer validity class Seat { public void Move(int pos) requires this.PeerConsistent; … } class Car { rep Seat s;peer Seat s; public void Adjust(Profile p)public void Adjust(Position p) requires this.PeerConsistent  requiresthis.PeerConsistent  p.PeerConsistent; p.PeerConsistent; {{ expose (this) { s.Move(p.SeatPosition);s.Move(p.SeatPosition); } }} o.Consistent  o.owner.mutable  o.valid o.PeerConsistent  o.owner.mutable  (  p p.owner = o.owner  p.valid)

19 Summary for aggregate objects: (  o o.mutable  Inv(o)) x.f = E; check x.mutable rep T t; invariant … this.t.f …; (  o o.mutable  o.owner.mutable)

20 x.valid := false Summary for aggregate objects: expose (x) { … } x.valid := true check x.valid check x.owner.mutable check (  r r.owner=x  r.valid) check Inv(x) (  o o.mutable  Inv(o)) (  o o.mutable  o.owner.mutable)

21 2. Immutable types class String { String SubString(int st, int len) requires this.PeerConsistent; … } class Car { String serialNumber; public String Year() requires this.PeerConsistent; { return serialNumber.Substring(12, 4); } Note: cannot use rep, since Car cannot expect to be the sole owner

22 Points to owner Mutable object Valid object Immutable object Ever-peer-consistent (immutable) objects

23 Summary for immutable types: (  o Immutable(typeof(o))  o.PeerConsistent) x.f = E; check x.mutable [Immutable] class M { T f; … } class C { M m; invariant … this.m.f …;

24 x.valid := false Summary for immutable types: expose (x) { … } x.valid := true check ¬ Immutable(typeof( x)) check … check … (  o Immutable(typeof(o))  o.PeerConsistent)

25 Immutable is determined from static type (except for object) [Immutable] class C extends B { … } [Immutable] allowed on C if either [Immutable] allowed on C if either –B is [Immutable] or –B is object [Immutable] required on C if [Immutable] required on C if –B is [Immutable]

26 3. Subclasses class Car { int speed; invariant 0 ≤ speed; … } class LuxuryCar extends Car { Radio r; invariant 6 ≤ r.CDCapacity; … }

27 Owners are pairs To support subclasses with invariants, we change owners to be pairs: To support subclasses with invariants, we change owners to be pairs: (object reference, class frame)

28 Invariants and subclasses class A { … } class B extends A { … } Points to owner Object A B

29 Summary for subclasses: (  o,T (o,T).mutable  Inv T (o)) x.f = E; check (x,C).mutable class C extends B { F f; invariant … this.f …; (  o,T (o,T).mutable  o.owner.mutable)

30 (x,C).valid := false Summary for subclasses: C x; … expose (x) { … } (x,C).valid := true check (x,C).valid check x.owner.mutable check (  r r.owner=(x,C)  (  R (r,R).valid)) check Inv C (x) (  o,T (o,T).mutable  Inv T (o)) (  o,T (o,T).mutable  o.owner.mutable)

31 4. Additive invariants class Car { int speed; … } class LuxuryCar extends Car { Radio r; invariant speed > 60  r.SoundBooster=true; overrides void SetSpeed(int kmph) { expose (this) { base.SetSpeed(kmph); if (speed > 60) { … } } } }

32 An additive frame is only as valid as its subclass frames class A { … } class B extends A { … } Points to owner Mutable object Valid object Object A B

33 Summary for additive invariants: (  o,T (o,T).mutable  Inv T (o)) x.f = E; check (  U U <: B  (o,U).mutable) class B extends A { additive F f; … } class C extends B { invariant … this.f …; (  o,T (o,T).mutable  o.owner.mutable)

34 Summary for additive invariants: (  o,T (o,T).mutable  Inv T (o)) (  o,T (o,T).mutable  o.owner.mutable) (  o,T (o,T).transmut  (o,T).mutable  (  U U <: T  (o,U).transmut)) C x; … additive expose (x) { … } (x,C).valid := true (x,C).transmut := false check (x,C).valid  (  U U <: C  (x,U).transmut) check x.owner.mutable check (  r r.owner=(x,C)  (  R (r,R).valid)) check Inv C (x) ≠ ≠ (x,C).valid := false (x,C).transmut := true

35 Object invariants in Spec# Spec# syntactically checks that invariants are admissible Spec# syntactically checks that invariants are admissible Ownership is specified with the [Owned] attribute Ownership is specified with the [Owned] attribute We first supported only rep ownership relations We first supported only rep ownership relations –peer relationships are often useful too –we now use PeerConsistent as the default method precondition –owners are set automatically on assignments of rep and peer fields An immutable class/interface is specified with [Immutable] An immutable class/interface is specified with [Immutable] We first supported only additive invariants in Spec# We first supported only additive invariants in Spec# –non-additive invariants are easier to work with –non-additive expose is now the default –implementation restriction: no further expose allowed on an object while a non-additive expose is in progress Additive methods (those that update the additive fields mentioned in additive invariants) require dynamic dispatch and use precondition Consistent Additive methods (those that update the additive fields mentioned in additive invariants) require dynamic dispatch and use precondition Consistent

36 Summary and conclusions Rich object structures need specification and verification support Rich object structures need specification and verification support –simple invariants –aggregate objects –subclasses –additive invariants –visibility-based invariants –observer invariants –static class invariants –…


Download ppt "Going beyond a basic ownership system in Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA Joint work with: Peter Müller Angela Wallenburg ESF workshop."

Similar presentations


Ads by Google