Download presentation
Presentation is loading. Please wait.
1
Bspline Notes Jordan Smith UC Berkeley CS184
2
Outline Bézier Basis Polynomials –Linear –Quadratic –Cubic Uniform Bspline Basis Polynomials –Linear –Quadratic –Cubic Uniform Bsplines from Convolution
3
Review of Bézier Curves DeCastlejau Algorithm V 001 V 111 V 000 V 011 Insert at t = ¾
4
Review of Bézier Curves DeCastlejau Algorithm 001 000 111 011 Insert at t = ¾
5
Review of Bézier Curves DeCastlejau Algorithm 001 000 111 011 00¾ ¾11 0¾1 Insert at t = ¾
6
Review of Bézier Curves DeCastlejau Algorithm 001 000 111 011 00¾ ¾¾1 ¾11 0¾10¾1 0¾¾ Insert at t = ¾
7
Review of Bézier Curves DeCastlejau Algorithm 001 000 111 011 00¾ ¾¾1 ¾11 0¾1 0¾¾ ¾¾¾ Insert at t = ¾
8
Review of Bézier Curves DeCastlejau Algorithm 001 000 111 011 00¾ ¾¾1 ¾11 0¾1 0¾¾ ¾¾¾ Insert at t = ¾
9
Review of Bézier Curves DeCastlejau Algorithm 001 000 111 011 00¾ ¾¾1 ¾11 0¾1 0¾¾ ¾¾¾ Insert at t = ¾
10
Review of Bézier Curves DeCastlejau Algorithm 001 000 111 011 00¾ ¾¾1 ¾11 0¾1 0¾¾ ¾¾¾ Insert at t = ¾
11
Bézier Curves Summary DeCastlejau algorithm –Evaluate Position(t) and Tangent(t) –Subdivides the curve into 2 subcurves with independent control polygons Subdivision of Bézier curves and convex hull property allows for: –Adaptive rendering based on a flatness criterion –Adaptive collision detection using line segment tests
12
Linear Bézier Basis Poly’s Bez 1 (t) = VtVt V0V0 V1V1 V0V0 VtVt V1V1 = (1-t) V 0 + t V 1 1-tt Knots: 012
13
Quadratic Bézier Basis Poly’s V 01 V tt V0tV0t Vt1Vt1 V 00 V 01 V 11 1-tt t t Bez 2 (t) == (1-t) 2 V 00 + 2(1-t)t V 01 + t 2 V 11 V 00 V0tV0t V 11 Vt1Vt1 V tt
14
Knots: Quadratic Bézier Basis Poly’s Bez 2 (t) = (1-t) 2 V 00 + 2(1-t)t V 01 + t 2 V 11 012
15
Cubic Bézier Basis Poly’s 001 111 011 00t tt1 t11 0t10t1 0tt ttt V ttt V 0tt V tt1 V 00t V0t1V0t1 V t11 V 111 V 011 V 001 V 000 1-tt t t t t t Bez 3 (t) == (1-t) 3 V 000 + 3(1-t) 2 t V 001 + 3(1-t)t 2 V 011 + t 3 V 111 000
16
Knots: Cubic Bézier Basis Poly’s Bez 3 (t) = (1-t) 3 V 000 + 3(1-t) 2 t V 001 + 3(1-t)t 2 V 011 + t 3 V 111 012
17
Blossoming of Bsplines 234 123 456 345 01765432 Knots:
18
Blossoming of Bsplines 234 123 456 345 233.53.545 33.54 017654323.5 Knots:
19
Blossoming of Bsplines 234 123 456 345 233.53.545 33.54 33.53.53.53.54 017654323.5 Knots:
20
Blossoming of Bsplines 234 123 456 345 233.53.545 33.54 33.53.53.53.54 017654323.5 3.53.53.5 Knots:
21
Bspline Blossoming Summary Blossoming of Bsplines is a generalization of the DeCastlejau algorithm Control point index triples on the same control line share 2 indices with each other Inserting a knot (t value) –Adds a new control point and curve segment –Adjusts other control points to form a control polygon Inserting the same t value reduces the parametric continuity of the curve A control point triple with all 3 indices equal is a point on the Bspline curve
22
Uniform Linear Bspline Basis Poly’s B 1 (t) = VtVt V0V0 V1V1 V0V0 VtVt V1V1 = (1-t) V 0 + t V 1 1-tt Knots: 012
23
Uniform Quadratic Bspline Basis Poly’s B 2 (t) = V tt V0tV0t Vt1Vt1 V -10 V 01 V 12 V 01 Vt1Vt1 V0tV0t V -10 V 12 V tt
24
Uniform Quadratic Bspline Basis Poly’s Knots: -20132 V -10 V 01 V 12
25
Uniform Cubic Bspline Basis Poly’s B 3 (t) = V 123 V 012 V -101 V -2-10 V ttt V 0tt V tt1 V -10t V0t1V0t1 V t12 -101 123 012 -10t tt1 t120t10t1 0tt ttt -2-10
26
Uniform Cubic Bspline Basis Poly’s Knots: -3-201432 V -2-10 V -101 V 012 V 123
27
Uniform Bsplines from Convolution 10102303214102 = 10 10 1023 = 102 = 10
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.