Download presentation
Presentation is loading. Please wait.
1
1 Friday, November 03, 2006 “The greatest obstacle to discovery is not ignorance, but the illusion of knowledge.” -D. Boorstin
2
2 Solving a System of Linear Equations §This is written as Ax = b, where A is an n x n matrix with A[i, j] = a i,j, b is an n x 1 vector [ b 0, b 1, …, b n ] T, and x is the solution.
3
3 Solving a System of Linear Equations We write this as: Ux = y. A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.
4
4 A 00 A 01 A 02 A 03 A 10 A 11 A 12 A 13 A 20 A 21 A 22 A 23 A 30 A 31 A 32 A 33
5
5 A 00 A 01 A 02 A 03 A 10 A 11 A 12 A 13 A 20 A 21 A 22 A 23 A 30 A 31 A 32 A 33
6
6 1A 01 / A 00 A 02 / A 00 A 03 / A 00 A 10 A 11 A 12 A 13 A 20 A 21 A 22 A 23 A 30 A 31 A 32 A 33
7
7 1A 01 / A 00 A 02 / A 00 A 03 / A 00 A 10 A 11 A 12 A 13 A 20 A 21 A 22 A 23 A 30 A 31 A 32 A 33
8
8 1A 01 / A 00 A 02 / A 00 A 03 / A 00 0A` 11 A` 12 A` 13 A 20 A 21 A 22 A 23 A 30 A 31 A 32 A 33
9
9 1A 01 / A 00 A 02 / A 00 A 03 / A 00 0A` 11 A` 12 A` 13 0A` 21 A` 22 A` 23 A 30 A 31 A 32 A 33
10
10 1A 01 / A 00 A 02 / A 00 A 03 / A 00 0A` 11 A` 12 A` 13 0A` 21 A` 22 A` 23 0A` 31 A` 32 A` 33 k+1 to n-1 1 to 3
11
11 1A 01 / A 00 A 02 / A 00 A 03 / A 00 01A` 12 A` 13 00A` 22 A` 23 00A` 32 A` 33 k+1 to n-1 2 to 3
12
12 1A 01 / A 00 A 02 / A 00 A 03 / A 00 01A` 12 A` 13 001A` 23 000A` 33 k+1 to n-1 3 to 3
13
13
14
14 Gaussian Elimination Serial Gaussian Elimination
15
15 Gaussian Elimination §What are the opportunities of parallelization?
16
16 Gaussian Elimination §1-D partitioning §Pi stores elements A[i,j] for 0<=j<=n
17
17 n Division Step
18
18
19
19 Elimination Step
20
20 Overall parallel runtime
21
21 §Idle processes in previous algorithm?
22
22 §Pipelined communication.
23
23 A 00 A 01 A 02 A 03 A 04 A 10 A 11 A 12 A 13 A 14 A 20 A 21 A 22 A 23 A 24 A 30 A 31 A 32 A 33 A 34 A 40 A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2 Iteration k=0 has started
24
24 1A 01 A 02 A 03 A 04 A 10 A 11 A 12 A 13 A 14 A 20 A 21 A 22 A 23 A 24 A 30 A 31 A 32 A 33 A 34 A 40 A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
25
25 1A 01 A 02 A 03 A 04 A 10 A 11 A 12 A 13 A 14 A 20 A 21 A 22 A 23 A 24 A 30 A 31 A 32 A 33 A 34 A 40 A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
26
26 1A 01 A 02 A 03 A 04 A 10 A 11 A 12 A 13 A 14 A 20 A 21 A 22 A 23 A 24 A 30 A 31 A 32 A 33 A 34 A 40 A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
27
27 1A 01 A 02 A 03 A 04 0A 11 A 12 A 13 A 14 A 20 A 21 A 22 A 23 A 24 A 30 A 31 A 32 A 33 A 34 A 40 A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2 Iteration k=1 has started
28
28 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 0A 21 A 22 A 23 A 24 A 30 A 31 A 32 A 33 A 34 A 40 A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
29
29 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 0A 21 A 22 A 23 A 24 0A 31 A 32 A 33 A 34 A 40 A 41 A 42 A 43 A 44 Iteration k=0 has ended Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
30
30 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 0A 21 A 22 A 23 A 24 0A 31 A 32 A 33 A 34 0A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
31
31 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 00A 22 A 23 A 24 0A 31 A 32 A 33 A 34 0A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2 Iteration k=2 has started
32
32 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 001A 23 A 24 00A 32 A 33 A 34 0A 41 A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2 Iteration k=1 has ended
33
33 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 001A 23 A 24 00A 32 A 33 A 34 00A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
34
34 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 001A 23 A 24 00A 32 A 33 A 34 00A 42 A 43 A 44 Division step k=0 Elimination step k=0 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
35
35 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 001A 23 A 24 000A 33 A 34 00A 42 A 43 A 44 Division step k=3 Elimination step k=3 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2 Iteration k=3 has started
36
36 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 001A 23 A 24 0001A 34 000A 43 A 44 Division step k=3 Elimination step k=3 Division step k=1 Elimination step k=1 Division step k=2 Elimination step k=2
37
37 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 001A 23 A 24 0001A 34 000A 43 A 44 Division step k=3 Elimination step k=3 Division step k=4 Elimination step k=4 Division step k=2 Elimination step k=2 Iteration k=3 has ended
38
38 1A 01 A 02 A 03 A 04 01A 12 A 13 A 14 001A 23 A 24 0001A 34 0000A 44 Division step k=3 Elimination step k=3 Division step k=4 Elimination step k=4 Division step k=2 Elimination step k=2 Iteration k=4 has started
39
39 1-D partitioning with less than n processes
40
40
41
41
42
42 §2-D partitioning
43
43
44
44
45
45
46
46
47
47 §Analysis of nxn 2D partitioning on nxn processors
48
48
49
49
50
50
51
51
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.