Presentation is loading. Please wait.

Presentation is loading. Please wait.

Foundations in Microbiology Sixth Edition

Similar presentations


Presentation on theme: "Foundations in Microbiology Sixth Edition"— Presentation transcript:

1 Foundations in Microbiology Sixth Edition
Lecture PowerPoint to accompany Foundations in Microbiology Sixth Edition Talaro Chapter 9 Microbial Genetics Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 Genetics and Genes Genetics – the study of heredity
The science of genetics explores: Transmission of biological traits from parent to offspring Expression and variation of those traits Structure and function of genetic material How this material changes

3

4 Levels of Structure and Function of the Genome
Genome – sum total of genetic material of an organism (chromosomes + mitochondria/chloroplasts and/or plasmids) genome of cells – DNA genome of viruses – DNA or RNA DNA complexed with protein constitutes the genetic material as chromosomes. Bacterial chromosomes are a single circular loop. Eucaryotic chromosomes are multiple and linear.

5 Three basic categories of genes:
Chromosome is subdivided into genes, the fundamental unit of heredity responsible for a given trait. site on the chromosome that provides information for a certain cell function segment of DNA that contains the necessary code to make a protein or RNA molecule Three basic categories of genes: Genes that code for proteins - structural genes Genes that code for RNA Genes that control gene expression - regulatory genes

6 All types of genes constitute the genetic makeup – genotype.
The expression of the genotype creates observable traits – phenotype.

7 Genomes Vary in Size Smallest virus – 4-5 genes
E. coli – single chromosome containing 4,288 genes; 1 mm; 1,000X longer than cell Human cell – 46 chromosomes containing 31,000 genes; 6 feet; 180,000X longer than cell

8

9 DNA Two strands twisted into a helix
Basic unit of DNA structure is a nucleotide Each nucleotide consists of 3 parts: a 5 carbon sugar - deoxyribose a phosphate group a nitrogenous base – adenine, guanine, thymine, cytosine Nucleotides covalently bond to form a sugar-phosphate linkage – the backbone each sugar attaches to two phosphates – 5′ carbon and 3′ carbon

10 DNA Nitrogenous bases covalently bond to the 1′ carbon of each sugar and span the center of the molecule to pair with an appropriate complementary base on the other strand adenine binds to thymine with 2 hydrogen bonds guanine binds to cytosine with 3 hydrogen bonds Antiparallel strands 3′ to 5′ and 5′ to 3′ Each strand provides a template for the exact copying of a new strand Order of bases constitutes the DNA code

11

12 Significance of DNA Structure
Maintenance of code during reproduction - constancy of base pairing guarantees that the code will be retained. Providing variety - order of bases responsible for unique qualities of each organism.

13 DNA Replication Making an exact duplicate of the DNA involves 30 different enzymes Begins at an origin of replication Helicase unwinds and unzips the DNA double helix An RNA primer is synthesized by primase DNA polymerase III adds nucleotides in a 5′ to 3′ direction leading strand – synthesized continuously in 5′ to 3′ direction lagging strand – synthesized 5′ to 3′ in short segments; overall direction is 3′ to 5′

14 DNA polymerase I removes the RNA primers and replaces them with DNA.
When replication forks meet, ligases link the DNA fragments along the lagging strand to complete the synthesis. Separation of the daughter molecules is complete.

15

16 DNA replication is semiconservative because each chromosome ends up with one new strand of DNA and one old strand.

17 Applications of the DNA code
Information stored on the DNA molecule is conveyed to RNA molecules through the process of transcription. The information contained in the RNA molecule is then used to produce proteins in the process of translation.

18

19 Gene-Protein Connection
Each triplet of nucleotides on the RNA specifies a particular amino acid. A protein’s primary structure determines its shape and function. Proteins determine phenotype. Living things are what their proteins make them. DNA is mainly a blueprint that tells the cell which kinds of proteins to make and how to make them.

20

21 RNAs Single-stranded molecule made of nucleotides
5 carbon sugar is ribose 4 nitrogen bases – adenine, uracil, guanine, cytosine phosphate

22 RNA 3 types of RNA: messenger RNA (mRNA) – carries DNA message through complementary copy; message is in triplets called codons transfer RNA (tRNA) – made from DNA; secondary structure creates loops; bottom loop exposes a triplet of nucleotides called anticodon which designates specificity and complements mRNA; carries specific amino acids to ribosomes ribosomal RNA (rRNA) – component of ribosomes where protein synthesis occurs

23

24 Transcription RNA polymerase binds to promoter region upstream of the gene. RNA polymerase adds nucleotides complementary to the template strand of a segment of DNA in the 5′ to 3′ direction. Uracil is placed as adenine’s complement. At termination, RNA polymerase recognizes signals and releases the transcript. 100-1,200 bases long

25

26 Translation Ribosomes assemble on the 5′ end of a mRNA transcript.
Ribosome scans the mRNA until it reaches the start codon, usually AUG. A tRNA molecule with the complementary anticodon and methionine amino acid enters the P site of the ribosome and binds to the mRNA.

27

28 Translation Elongation
A second tRNA with the complementary anticodon fills the A site. A peptide bond is formed. The first tRNA is released and the ribosome slides down to the next codon. Another tRNA fills the A site and a peptide bond is formed. This process continues until a stop codon is encountered.

29 Translation Termination
Termination codons – UAA, UAG, and UGA – are codons for which there is no corresponding tRNA. When this codon is reached, the ribosome falls off and the last tRNA is removed from the polypeptide.

30

31 The Master Genetic Code
Represented by the mRNA codons and the amino acids they specify Code is universal Code is redundant

32

33

34 Polyribosomal complex allows for the synthesis of many protein molecules simultaneously from the same mRNA molecule.

35 Eucaryotic Transcription and Translation
Do not occur simultaneously – transcription occurs in the nucleus and translation occurs in the cytoplasm. Eucaryotic start codon is AUG, but it does not use formyl-methionine. Eucaryotic mRNA encodes a single protein, unlike bacterial mRNA which encodes many. Eucaryotic DNA contains introns – intervening sequences of noncoding DNA- which have to be spliced out of the final mRNA transcript.

36

37 Genetics of Animal Viruses
Viral genome - one or more pieces of DNA or RNA; contains only genes needed for production of new viruses Requires access to host cell’s genetics and metabolic machinery to instruct the host cell to synthesize new viral particles

38

39

40 Regulation of Protein Synthesis and Metabolism
Genes are regulated to be active only when their products are required. In procaryotes this regulation is coordinated by operons, a set of genes, all of which are regulated as a single unit.

41 Operons 2 types of operons:
inducible – operon is turned ON by substrate: catabolic operons- enzymes needed to metabolize a nutrient are produced when needed repressible – genes in a series are turned OFF by the product synthesized; anabolic operon –enzymes used to synthesize an amino acid stop being produced when they are not needed

42 Lactose Operon: Inducible Operon
Made of 3 segments: Regulator- gene that codes for repressor Control locus- composed of promoter and operator Structural locus- made of 3 genes each coding for an enzyme needed to catabolize lactose – b-galactosidase – hydolyzes lactose permease - brings lactose across cell membrane b-galactosidase transacetylase – uncertain function

43 Lac Operon Normally off Lactose turns the operon on.
In the absence of lactose, the repressor binds with the operator locus and blocks transcription of downstream structural genes. Lactose turns the operon on. Binding of lactose to the repressor protein changes its shape and causes it to fall off the operator. RNA polymerase can bind to the promoter. Structural genes are transcribed.

44

45 Arginine Operon: Repressible
Normally on and will be turned off when nutrient is no longer needed When excess arginine is present, it binds to the repressor and changes it. Then the repressor binds to the operator and blocks arginine synthesis.

46

47 Antibiotics That Affect Transcription and Translation
Rifamycin – binds to RNA polymerase Actinomycin D - binds to DNA and halts mRNA chain elongation Erythromycin and spectinomycin – interfere with attachment of mRNA to ribosomes Chloramphenicol, linomycin and tetracycline-bind to ribosome and block elongation Streptomycin – inhibits peptide initiation and elongation

48 Mutations: Changes in the Genetic Code
A change in phenotype due to a change in genotype (nitrogen base sequence of DNA) is called a mutation. A natural, nonmutated characteristic is known as a wild type (wild strain). An organism that has a mutation is a mutant strain, showing variance in morphology, nutritional characteristics, genetic control mechanisms, resistance to chemicals, etc.

49 Causes of Mutations Spontaneous mutations– random change in the DNA due to errors in replication that occur without known cause Induced mutations – result from exposure to known mutagens, physical (primarily radiation) or chemical agents that interact with DNA in a disruptive manner

50 Categories of Mutations
Point mutation – addition, deletion or substitution of a few bases Missense mutation – causes change in a single amino acid Nonsense mutation – changes a normal codon into a stop codon Silent mutation – alters a base but does not change the amino acid

51 Categories of Mutations
Back-mutation – when a mutated gene reverses to its original base composition Frameshift mutation – when the reading frame of the mRNA is altered by the addition or deletion of nucleotides in a newly synthesized DNA

52 Repair of Mutations Since mutations can be potentially fatal, the cell has several enzymatic repair mechanisms in place to find and repair damaged DNA. DNA polymerase – proofreads nucleotides during DNA replication Mismatch repair – locates and repairs mismatched nitrogen bases that were not repaired by DNA polymerase Light repair – for UV light damage Excision repair – locates and repairs incorrect sequence by removing a segment of the DNA and then adding the correct nucleotides

53

54 The Ames Test Any compound known to be mutagenic is considered to be carcinogenic. Agricultural, industrial, and medicinal compounds are screened using the Ames test. Indicator organism is a mutant strain of Salmonella typhimurium that has lost the ability to synthesize histidine. This mutation is highly susceptible to back-mutation.

55

56 Positive and Negative Effects Of Mutations
Mutations leading to nonfunctional proteins are harmful, possibly fatal. Organisms with mutations that are beneficial in their environment can readily adapt, survive, and reproduce – these mutations are the basis of change in populations. Any change that confers an advantage during selection pressure will be retained by the population.

57 DNA Recombination Events
Genetic recombination – occurs when an organism acquires and expresses genes that originated in another organism 3 means for genetic recombination in bacteria: Conjugation Transformation Transduction

58 Conjugation Conjugation – transfer of a plasmid or chromosomal fragment from a donor cell to a recipient cell via a direct connection Gram-negative cell donor has a fertility plasmid (F plasmid, F′ factor) that allows the synthesis of a conjugation (sex) pilus recipient cell is a related species or genus without a fertility plasmid donor transfers fertility plasmid to recipient through pilus

59

60 Conjugation High-frequency recombination – donor’s fertility plasmid has been integrated into the bacterial chromosome When conjugation occurs, a portion of the chromosome and a portion of the fertility plasmid are transferred to the recipient.

61

62 Transformation Transformation – chromosome fragments from a lysed cell are accepted by a recipient cell; the genetic code of the DNA fragment is acquired by the recipient Donor and recipient cells can be unrelated Useful tool in recombinant DNA technology

63 Insert figure 9.23 transformation

64 Transduction Transduction – bacteriophage serves as a carrier of DNA from a donor cell to a recipient cell Two types: generalized transduction – random fragments of disintegrating host DNA are picked up by the phage during assembly; any gene can be transmitted this way specialized transduction – a highly specific part of the host genome is regularly incorporated into the virus

65

66

67 Transposons Special DNA segments that have the capability of moving from one location in the genome to another – “jumping genes” Cause rearrangement of the genetic material Can move from one chromosome site to another, from a chromosome to a plasmid, or from a plasmid to a chromosome May be beneficial or harmful

68


Download ppt "Foundations in Microbiology Sixth Edition"

Similar presentations


Ads by Google