Download presentation
Presentation is loading. Please wait.
1
1 Short Vectors of Planar Lattices Via Continued Fraction Friedrich Eisenbrand Information Processing Letters, 2001. 田錦燕 95/05/5
2
2 Introduction 問題:在 2 維 lattice 上, 找最短向量 技術:將向量轉成整數 norm, 此時形同求解 整數 GCD, 再利用連分數, 逼近最短向量.
3
3 定義 vector 長度 A vector c=(c1,c2) T l ∞ : ||c|| ∞ =max{|c 1 |,|c 2 |} l 1 : ||c|| 1 =|c 1 |+|c 2 | l 2 : ||c|| 2 =(c 1 2 +c 2 2 ) 1/2
4
4 Continued Fractions k-th convergent : 1-th convergent: 2-th convergent: 3-th convergent: g 0 =a 0 h 0 =1 g 1 =ga 0 a 1 +1 h 1 =a 1 g t =a t g t-1 +g t-2 h t =a t h t-1 +h t-2,t>=2
5
5 Hermite normal form 其中, d=xa 3 +ya 4 c > 0 and a > b ≥ 0 A × Unimodular matrix = upper trangular matrix 說明: Unimodular matrix 是一個 determine 為 ±1 的矩陣,Hermite normal form 可視為 basis 轉換。
6
6 Shortest vector 在 l 1 -norm 中,lattice 經由 HNF, 可得到 最短向量會是 或 或
7
7 範例 Convergent: 代入 可能的最短向量有 : 在 l 1 -norm ,最短的是
8
8 In l 1 -norm, 在 (34,16)(10,5) 形成的 lattice, 找最 短向量 34+16=50 10+5=15 50/15=3 餘 5 ( 註 ) (34,16)-3(10,5)=(4,1) 10+5=15 4+1=5 15/5=3 (10,5)-3(4,1)=(-2,2) Gauss Reduction Algorithm ( 註 ) 1-norm 中, 定義兩個向量的內積 為 (a ‧ b)=max{(|a|,|b|)}
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.