Download presentation
Presentation is loading. Please wait.
1
1
2
2 6 derivations in Predicate Logic 15 points each, plus 10 free points 1.universal derivation[Exercise Set C] 2.existential-out[Exercise Set D] 3.negation rules[Exercise Set E] 4.multiple quantifiers[Exercise Set F] 5.polyadic quantifiers[Exercise Set G] 6.polyadic quantifiers[Exercise Set G]
3
3 (10) (9) (8) (7) (6) (5) (4) (3) (2) (1) there is someone whom everyone R’s / everyone R’s someone or other 8,9, 7, Rab 6, Rab 4, y Ray 1, yRyb DD : As yRay D (ID) : yRay UD : x yRxy Pr x yRyx II OO OO OO OO
4
4 (2) (1) there is a F who R’s every G / every G is R’ed by some F or other : x(Gx y(Fy & Ryx)) Pr x(Fx & y(Gy Rxy))
5
5 (13) (17) (16) (15) (14) (12) (11) (10) (8) (9) (7) (6) (5) (4) (3) (2) (1) 11, Ga Rba 15,16, 10,14 Rba 4,13, Rba 12, Fb Rba 8, (Fb & Rba) y(Gy Rby) 9, Fb 6, y (Fy & Rya) 1, Fb & y(Gy Rby) DD : As y(Fy & Rya) D (ID) : y(Fy & Rya) As Ga CD : Ga y(Fy & Rya) UD : x(Gx y(Fy & Ryx)) Pr x(Fx & y(Gy Rxy)) OO II OO OO &O OO &O OO OO
6
6 (2) (1) there is a G who R’s no F / every F is dis-R’ed by at least one G : x(Fx y(Gy & Ryx)) Pr x(Gx & y(Fy & Rxy))
7
7 (19) (18) (17) (16) (15) (14) (13) (12) (11) (10) (9) (8) (7) (6) (5) (4) (3) (2) (1) 17,18, 4,16, Rba 10,1, Rba 15, Fa Rba 13, (Fa & Rba) 12, Gb Rba 11, y (Fy & Rby) 9, (Gb & Rba) y(Fy & Rby) 8, Gb 6, y (Gy & Rya) 1, Gb & y(Fy & Rby) DD : As y(Gy & Rya) D (ID) : y(Gy & Rya) As Fa CD : Fa y(Gy & Rya) UD : x(Fx y(Gy & Ryx)) Pr x(Gx & y(Fy & Rxy)) II OO OO &O OO OO OO &O OO OO
8
8 GOOD LUCK ON THE FINALS! HAVE A GREAT SUMMER! GOOD LUCK ON EXAM 4! GO SOX!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.