Download presentation
Presentation is loading. Please wait.
1
Backward Nondeterministic DAWG Matching Algorithm
A Bit-parallel Approach to Suffix Automata: Fast Extended String Matching, Navarro, G. and Raffinot, M., Lecture Notes in Computer Science, Vol.1448, 1998, pp Advisor: Prof. R. C. T. Lee Speaker: L. C. Chen
2
Problem Definition: Input : A text T and a pattern P.
Output : All the locations where P matches T.
3
This algorithm uses rule 1: Suffix to Prefix Rule:
For a window to have any chance to match a pattern, in some way, there must be a suffix of the window which is equal to a prefix of the pattern. T P
4
Find the longest suffix U of the window which is equal to some prefix of P. Skip the pattern as follows: U
5
Example T = GCA TCGACAGAC TATACAGTACG P = GACGGATCA ∵The longest suffix of the window which is equal to a prefix of P is “GAC”, slide the window by 6. T = GCATCGACAGACTATACAGTACG P = GACGGATCA
6
We give an example to introduce how this algorithm find the longest
suffix of the window which is equal to a prefix of P.
7
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD We want to find the longest suffix of “BDDCCDBAD” which is also a prefix of the pattern.
8
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD First, we read “D”.
9
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD We find all the substrings ”D” in the pattern.
10
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD We read the next character “A”. We check if the right of the substrings ”D” are “A” or not.
11
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD Thus, we find out all the substrings ”AD” in the pattern.
12
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD We read the next character “B”. We check if the right of the substrings “AD” are “B” or not.
13
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD We find that the substring ”BAD” is in the pattern. Note that “BAD” is also a prefix of P.
14
Text : ABDDCCDBADEGGGGJJ
Example: Text : ABDDCCDBADEGGGGJJ Pattern : BADADCEAD We read the next character “D”. We can not find a character “D” in the right of the substring “BAD”. We report that “BAD” is the longest suffix of “BDDCCDBAD” which is equal a prefix of P.
15
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD We want to find the longest suffix of “BDDCCDDAD” which is also a substring of the pattern.
16
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD First, we find all the substrings ”D” in the pattern.
17
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD mismatch Then we find out all the substrings ”AD” in the pattern.
18
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD Then we find out all the substrings ”AD” in the pattern.
19
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD mismatch We find out all the substrings ”DAD” in the pattern.
20
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD We find out all the substrings ”DAD” in the pattern.
21
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD mismatch We find all the substrings ”DDAD” in the pattern.
22
Text : ABDDCCDDADEGGGGJJ
Another example: Text : ABDDCCDDADEGGGGJJ Pattern : ACDADCEAD mismatch We find all the substrings ”DDAD” in the pattern. There is no substring “DDAD” in the pattern. There is no any suffix of “BDDCCDDAD” which is equal to a prefix of P.
23
The idea that we explained above is the main idea of this
algorithm. And next we will use bit-parallel method to implement this algorithm.
24
We use bits to store the positions of a character in P.
Example: P: CABBCAD P: CABBCAD A: For character “A”, we store B: For character “B”, we store For character “C”, we store C: For character “D”, we store D: For the characters do not exit in P we store *:
25
Here, we explain how to use bit-parallel to find the substring
of a pattern which is equaled to a suffix of the window. Text: ABCABCABA ,∑={A,B,C,D} Pattern: CABBCAD Pattern: CABCCAD A: B: C: D: other: D: We use a mask D to record some information.
26
<<1: left shift one bit.
Text: ABCABCABA ,∑={A,B,C,D} Pattern: CABBCAD Pattern: CABCCAD A: B: C: D: other: D: And A: D: <<1: left shift one bit. D= <<1 =
27
Text: ABCABCABA ,∑={A,B,C,D} Pattern: CABBCAD Pattern: CABCCAD
other: D: And C: D: We know “CA” is a suffix of the window which is equal to a prefix of the pattern. D= <<1 =
28
Text: ABCABCABA ,∑={A,B,C,D} Pattern: CABBCAD Pattern: CABCCAD
other: D: And B: D: We know “BCA” is a substring of the pattern. D= <<1 =
29
Text: ABCABCABA ,∑={A,B,C,D} Pattern: CABBCAD Pattern: CABCCAD
other: D: And A: There is no substring “ABCA” in the pattern.
30
Text: ABCABCABA ,∑={A,B,C,D} Pattern: CABBCAD
“CA” is a suffix of “BCA” which is a prefix of the pattern.
31
We take another example:
Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
32
Example: Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
First, we build: Pattern: ACBCCBD A: B: C: D: others:
33
Example: Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
others: Pattern: ACBCCBD D:
34
Example: Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
others: Pattern: ACBCCBD D:
35
Example: Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
others: Pattern: ACBCCBD D: And C: D: Where there is a “1”, there is a substring “C” in Pattern. We set D = <<1=
36
Example: Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
others: Pattern: ACBCCBD D: And C: D: Where there is a “1”, there is a substring “CC” in Pattern. We set D = <<1=
37
Example: Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
others: Pattern: ACBCCBD D: And B: D: Where there is a “1”, there is a substring “BCC” in Pattern. We set D = <<1=
38
Example: Text: ABCABCCBA ,∑={A,B,C,D} Pattern: ACBCCBD
others: Pattern: ACBCCBD D: And A: D: There is no substring “ABCC” in Pattern. There is no any suffix of the window which is equal to a prefix of the pattern.
39
Time Complexity: If the length of the text is n and the length of pattern is m, the time complexity of this algorithm is O(mn) in the worst case.
40
Reference [BG92]A new approach to text searching, R. Baeza-Yates and Navarro, G., CACM. Vol. 35, 1992, pp [BEH89]Average sizes of suffix trees and dawgs., Blumer, A., Ehrenfeucht, A. and Haussler, D., Discrete Applied Mathematics, Vol. 24, 1989, pp [BM77] A fast string searching algorithm. Boyer, R. S. and Moore, J. S., Communications of the ACM, Vol. 20, 1977, pp [GM98] A Bit-Parallel Approach to Suffix Automata: Fast Extended String Matching, G. NAVARRO and M. RAFFINOT, In Proceedings of the 9th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer Science 1448, Springer-Verlag, Berlin, 1998, pp
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.