Download presentation
Presentation is loading. Please wait.
1
Beispielbild Training Programme Air Quality Monitoring, Emission Inventory and Source Apportionment Studies Source Dispersion Modelling Andreas Kerschbaumer Freie Universität Berlin, Institut für Meteorologie Andreas.Kerschbaumer@FU-Berlin.de
2
2 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Overview
3
3 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Overview - General Introduction - Statistical Models, - Deterministic Models - Chemistry Transport Models - Theoretical aspects - Input data - Validation
4
4 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Overview - Application of Chemistry Transport Models - Emission Scenarios, - Source Apportionment - Process Analysis
5
5 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling General Aspects - Statistical approach - Receptor Models - Based on measured pollutant concentrations - Valid for non-reactive (or slowly reactive) species - Chemical Mass Balance (CMB) - for source apportionments - Principal Component Analysis (PCA) - for source identification - Empirical Orthogonal Functions (EOF) - for location and strength of emittors.
6
6 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling General Aspects - Statistical approach - Receptor Models - Based on measured pollutant concentrations - Valid for non-reactive (or slowly reactive) species - Air parcel trajectory analysis
7
7 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling - CMB a ij source emission signature (composition) s j source contribution m = number of sources - Constant source emission composition - Non-reactive species - Sources contribute to concentration - Uncertainties are un-related - Number of sources ≤ number of species - Measurement errors random Statistical approach
8
8 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling - PCA Statistical approach A = correlation matrix between species c i and c j (over range k) x = Eigenvectors λ = Eigenvalues I = unity
9
9 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling - EOF Statistical approach
10
10 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling - Air Parcel Trajectories Statistical approach
11
11 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Deterministic Models CHEMISTRY-TRANSPORT-MODELS
12
12 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Deterministic Models Box model
13
13 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Deterministic Models Lagrange model
14
14 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Deterministic Models Gaussian models
15
15 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Deterministic Models Gaussian models where C(x, y, z) : pollutant concentration at point ( x, y, z ); U: wind speed (in the x "downwind" direction, m/s) σ: standard deviation of the concentration in the x and y direction, i.e., in the wind direction and cross-wind, in meters; Q is the emission strength (g/s) h is the emission release height,
16
16 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling
17
17 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling
18
18 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Chem. Transport Model 3-D Grid Modelling
19
19 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Chem. Transport Model 3-D Grid Modelling
20
20 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Chem. Transport Model
21
21 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Chem. Transport Model
22
22 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Tropospheric chemistry
23
23 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Tropospheric chemistry
24
24 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Emissions Anthropogenic PM2.5 Emissions for Europe
25
25 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Emissions
26
26 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Meteorology
27
27 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Meteorology
28
28 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Landuse
29
29 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Validation
30
30 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Validation REM_Calgrid: Ozone Validation at rual background station 1997
31
31 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Validation
32
32 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Validation e Anorganisches PM10 Kohlenstoffhaltiges PM10
33
33 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling Validation
34
34 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS REPRESENTATION OF CURRENT STATE spatially homogenous
35
35 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS REPRESENTATION OF CURRENT STATE
36
36 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS REPRESENTATION OF CURRENT STATE
37
37 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS REPRESENTATION OF CURRENT STATE temporally continuous
38
38 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Emission Scenarios D2005 – MFR2020 [kt/yr] SNAPSO2NOxNMVOCPM10PM2.5NH3 01 Combustion in energy and transformation industries 781350540 02 Non-industrial combustion plants 47283015140 03 Combustion in manufacturing industry 346110 04 Production processes 423871151 05 Extraction and distribution of fossil fuels 2013100 06 Solvent and other product use 008000 07 Road transport 05447317183 08 Other mobil sources and machinery 06825880 09 Waste treatment and disposal 000000 10 Agriculture 0551167 11 Other sources and sinks 000200 Sum 172864160615171
39
39 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Emission Scenarios
40
40 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Emission Scenarios
41
41 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Emission Scenarios
42
42 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Emission Scenarios
43
43 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Source Apportionment from EMEP
44
44 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Source Apportionment from EMEP
45
45 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Source Apportionment
46
46 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Source Apportionment
47
47 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Source Apportionment
48
48 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Process Analysis
49
49 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Process Analysis
50
50 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Process Analysis net transport contribution Ammo EC Sulf OMNitr SOA Rest
51
51 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling APPLICATIONS Process Analysis wind direction influence 14.2 SULF NITR 19.0 13.9 3.8 20.0 11.6 3.8 11.4 14.3 13.1 18.6 5.4 5.3 19.5 3.8
52
52 A. Kerschbaumer, 20.11.2009Source Dispersion Modelling LITERATURE Seinfeld and Pandis, Atmospheric Chemistry and Physics, John Wileyd Sons, 1998 Peter Warneck, Chemistry of the Natural Atmosphere, Academic Press, Inc., 1988 R. B. Stull, An Introduction to Boundary Layer Meteorology, Springer- Verlag, 1988 Bruno Sportisse, Air Pollution Modelling and Simulaiton, Springer-Verlag, 2001
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.