Download presentation
Presentation is loading. Please wait.
1
Diffuse Galactic X-ray Emission & the Galactic Centre
Bob Warwick University of Leicester
2
Accreting Black-holes in the Nearby Galaxy M101
OPTICAL X-RAY
3
Why are X-rays Important? A Normal Face-on Galaxy – M101
Identified phases of the Galactic ISM: Very hot: log T > 7.5 i.e. KT > 3 keV. Hot: 6 < log T < 7.5, i.e < kT < 3 keV Coronal: 5 < log T < 6 Warm: log T ~ 4, e.g. WIM, WNM. Cold: log T e.g. Molecular clouds Why are X-rays Important? A Normal Face-on Galaxy – M101 XMM-Newton source-removed EPIC image with GALEX UV contours superimposed (Warwick et al in prep.) keV
4
X-ray Emission from the Milky Way
Type of Emitter Number in Summed Lx Galaxy erg s-1 HMXRB ~3 LMXRB ~30 SNR ~ <1 Low Lx Be Binaries ~ <1 CVs ~ <1 RSCVn ~ <1 Late Type Stars <1 Active Nucleus <0.001 Diffuse Disk/GC ~3 Diffuse Bulge ~20 Diffuse Halo/Corona ~10 Total ~60
5
Haslam et al. 1982 408 MHz Snowden et al. 1997
6
Chandra Mosaic of the Galactic Centre Region
Wang, Gotthelf & Lang (2002)
7
Topics The Local Bubble, the Galactic Halo & Beyond
Loop 1 & the Galactic Bulge Emission The Origin of the Hard Galactic Ridge Hot Plasma in the Galactic Center Region Fluorescent X-rays from GC Molecular Clouds
8
Topics The Local Bubble, the Galactic Halo & Beyond
Loop 1 & the Galactic Bulge Emission The Origin of the Hard Galactic Ridge Hot Plasma in the Galactic Center Region Fluorescent X-rays from GC Molecular Clouds
9
Distribution of ~ 106 K Plasma in the Local Galaxy
T = K T = K Galactic Anti-Centre Galactic Centre GALACTIC PLANE Snowden (2002)
10
Shadowing of the ¼ keV SXRB in Draco
IRAS 100 micron RAS ¼ keV Burrows & Mendenhall 1991; Snowden et al. 1991
11
Distribution of ~ 106 K Plasma in the Local Galaxy
T = K Draco Nebula T = K 270o 90o Cygnus Super Bubble Snowden (2002)
12
Simulated Spectrum of the Galactic Foreground at High Latitude
Local Hot Bubble Active Galaxies Galactic Halo IGM of Local Group ? WHIM ? Fang et al, 2005
13
WHIM Absorption Along the Line of Sight to Markarian 421
Nicastro et al. (2005)
14
Fang et al, 2005 Hot gas in a Galaxy Group
Diffuse emission from a WHIM filament Void in the WHIM structure Fang et al, 2005
15
XMM-Newton EPIC Instrument
Large Effective Area: ~ 2000 cm2 @ 1 keV Good Imaging Capability: PSF(FWHM) 6 arcsec Wide Field of View: ~30 arcmin diameter Broad Bandpass: keV Good Spectral Resolution: 120 eV @ 6 keV
16
XMM MIRRORS
17
XMM EPIC CCD CAMERAS MOS CCDs pn CCD
18
Measuring the Spectrum of the Diffuse XRB with the EPIC CCDs
pn Instrumental fluorescent lines MOS Particle continuum Energy (keV)
19
Simulated Spectra WHIM FILAMENT
20
Topics The Local Bubble, the Galactic Halo & Beyond
Loop 1 & the Galactic Bulge Emission The Origin of the Hard Galactic Ridge Hot Plasma in the Galactic Center Region Fluorescent X-rays from GC Molecular Clouds
21
Distribution of ~106 K Plasma in the Local ISM
T = K T = K Galactic Centre Galactic Anti-Centre Snowden (2002)
22
ROSAT ALL-SKY SURVEY - ¾ keV IMAGE
23
Soft X-ray Spectra of the North Polar Spur
Willingale et al. (2003)
24
Willingale et al. (2003)
25
ROSAT ALL-SKY SURVEY - ¾ keV IMAGE
Ophiuchus Dark Cloud
26
X-ray Shadowing in the Ophiuchus Molecular Cloud
Image: X-ray keV Contours: IRAS 100 micron Energy (keV) EPIC PN SPECTRUM: ON/OFF CLOUD Mendes et al. (2005) reported in Breitschwerdt et al. (2005)
27
ROSAT ALL-SKY SURVEY - ¾ keV IMAGE
28
EPIC MOS SPECTRA FOR THE GALACTIC BULGE REGION
0.0,0.0 0.5,-2.6 1.1,-3.8 0.4,-5.4 0.5,-8.0 0.0,-11.9 345,+12 345,+24
29
Topics The Local Bubble, the Galactic Halo & Beyond
Loop 1 & the Galactic Bulge Emission The Origin of the Hard Galactic Ridge Hot Plasma in the Galactic Center Region Fluorescent X-rays from GC Molecular Clouds
30
The Galactic X-ray Ridge
Identified as a significant Galactic feature by HEAO1 (Worrall et al. 1982) Narrow ridge evident in EXOSAT Galactic Plane Scan (Warwick et al. 1985) Extensively studied in Ginga & ASCA Surveys (Yamauchi & Koyama 1993; Sugizaki et al. 2001) 6. 7 keV line Excellent Tracer Galactic Center
31
Spectrum of the Galactic Ridge
Emission lines from highly ionized Si, S, and Fe multi-temperature plasma models ORIGIN OF THE HARD COMPONENT? Luminosity of 1.4 x 10^38 erg/s Energy Density ~10 eV/cm^3 Too hot to originate in SN activity Unbound to Galactic Disk Possible approaches to various aspects of the problem: Magnetic reconnection & confinement Quasi-thermal plasma LECRe – non-thermal contribution LECR ions & charge exchange See Tanaka (2002) ASCA GIS 6.7 keV iron line kT ~ 10 keV Cosmic X-ray Background Cool component kT ~0.8 keV Kaneda et al. (1997)
32
Is the Hard X-ray Galactic Ridge due to
Truly diffuse emission? The superposition of point sources? Ebisawa et al (2005) Point source contribution
33
Is the Hard X-ray Galactic Ridge due to
Truly diffuse emission? The superposition of point sources? Ebisawa et al. (2003,2005)
34
XGPS-I Survey after Point Source Removal
keV 2-6 keV
35
XGPS-I Survey after Point Source Removal
2-6 keV G G G G =Kes 69 Radio 20 cm
36
Variation of the 2-6 keV surface brightness of the Galactic X-ray Ridge with (l,b)
Galactic Longitude -0.5o 0.0o +0.5o Galactic Latitude
37
The 6. 7 keV iron line – the key diagnostic. ASCA GIS: 6. 61+/-0
The 6.7 keV iron line – the key diagnostic? ASCA GIS: /-0.02 keV (Kaneda et al. 1997) nei plasma or a blend of thermal emission with 6.4 keV iron fluorescence from LECRe excitation of cold gas ASCA SIS: Blend of 6.70 keV (He-like) & 6.96 keV (H-like) lines (Tanaka 2002) ~ collisional equilibrium thermal plasma at ~ 8 keV very similar spectrum to that seen in Galactic Centre! Chandra: /-0.14 keV (Ebisawa et al. 2005) consistent with ASCA GIS result!
38
The X-ray Spectrum of the Galactic X-ray Ridge measured by XMM-Newton
Equivalent width of 6.4 keV Fe fluorescence line < 50 eV 6.7 keV iron line Raw Background Background-subtracted Preliminary Only
39
Topics The Local Bubble, the Galactic Halo & Beyond
Loop 1 & the Galactic Bulge Emission The Origin of the Hard Galactic Ridge Hot Plasma in the Galactic Center Region Fluorescent X-rays from GC Molecular Clouds
40
XMM-NEWTON GALACTIC CENTRE SURVEYS
WIDE-FIELD SURVEY Anne Decourchelle Saclay Bob Warwick Leicester Masaaki Sakano Leicester Peter Predehl MPE Delphine Porquet MPE SGR A* MONITORING Andrea Goldwurm Saclay et al ~ 250 ks ~ 400 ks
41
Sgr A - Radio Arc Region 0.5-1.4 keV X-ray 0.0o -0.2o 0.2o -0.2o
Galactic Latitude -0.2o Galactic Longitude
42
Sgr A - Radio Arc Region 2-4.5 keV X-ray 0.0o -0.2o 0.2o -0.2o
Arches Cluster Sgr A* 0.0o -0.2o 0.2o 1E Galactic Latitude Sgr A East SNR -0.2o Galactic Longitude
43
Sgr A - Radio Arc Region 4.5-6 keV X-ray 0.0o -0.2o 0.2o -0.2o
Arches Cluster Sgr A East SNR Sgr A* 0.0o -0.2o 0.2o 1E Galactic Latitude NT X-ray Threads -0.2o Galactic Longitude
44
Sgr A - Radio Arc Region 6-9 keV X-ray 0.0o -0.2o 0.2o -0.2o Sgr A*
Transient 0.0o -0.2o 0.2o Transient Galactic Latitude NT X-ray Threads G Transient -0.2o Galactic Longitude
45
2-6 keV band 2.4 keV S line 6.7 keV Fe line 6.4 keV Fe line
46
Spectral Extraction Region 4.5- 6 keV Continuum
Celestial Coordinates
47
7-10 keV Thermal and/or Non-Thermal
X-ray Spectrum from the Annular Region around Sgr A Si XIII S XV 7-10 keV Thermal and/or Non-Thermal Ar XVII Ca XIX Fe 1-3 keV Thermal Al & Si Fluorescence Lines
48
Fe-line Spectrum from the Annular Region around Sgr A
6.4 keV keV keV Fe XXV Fe Neutral Fe XXVI Intrinsic width of Fe 6.7 keV line 27 +/- 13 eV
49
Fe K S XV Fe XXV 8 keV thermal 1 keV thermal
Non-thermal bremmstrahlung plus 6.4 keV iron fluorescence from LECRe + molecular gas
50
a x b x c x 4.5-6 keV Continuum 6.4 keV Iron Line 2.4 keV Sulphur Line
51
a = 1.8 (Z~3 ; LECRe component)
b = (Z ~1 ; 1 keV plasma) c = 3.7 (Z=1 ; 8 keV plasma)
52
Distribution of 6.7 keV line as a tracer of the hard “thermal” component
Corrected for 6.7 keV line emission originating in the softer ~ 1 keV plasma Surface brightness versus radius Emissivity ~ r -1.3
53
The GC Bipolar Lobes observed by Chandra Credit: Mark Morris
Galactic plane Apparently thermal outflow from SgrA* 6’ = 15 pc Chandra smoothed, point-source removed keV image. Credit: Mark Morris
54
+b 6’ = 15 pc Ratio: soft (2– 4.7 keV) / hard (4.7 – 8 keV) emission (most point sources removed)
55
Locations of point sources (Muno et al.)
56
Hot Diffuse Gas in the Galactic Centre
Two temperature components: keV attributable to supernovae & the GC outflow ~8.0 keV implied energy if diffuse and unbounded ~1040 erg s-1 Latter due to sources? A population of 2 x 10^5 CV-like sources with Lx ~ 10^31 erg/s at the Galactic Centre would do the trick! (Muno et al. 2004) Then how about trying the same trick for the Galactic Ridge!
57
Topics The Local Bubble, the Galactic Halo & Beyond
Loop 1 & the Galactic Bulge Emission The Origin of the Hard Galactic Ridge Hot Plasma in the Galactic Center Region Fluorescent X-rays from GC Molecular Clouds
58
ASCA Sgr C Fe K - Neutral Gas Koyama et al. (1996)
59
An X-ray echo of the past activity of Sgr A* ?
X-RAY REFLECTION NEBULAE An X-ray echo of the past activity of Sgr A* ? Churazov, Gilfanov & Sunyaev 1999 Fluorescence of giant molecular clouds illuminated by a flare on Sgr A* producing LX~1039 erg/s, for t > ~10 yrs, ~300 yrs ago. (Sunyaev et al. 1993, Koyama et al. 1996, Murakami et al. 2001, Revnivtsev et al )
60
X-ray Reflection From Cold Near-Neutral Matter
Fe K line dense neutral clouds X-rays 6.4 keV line Reflection models predict: Neutral Fe Kalpha Line Eq. Width ~ 150 eV (wrt direct continuum) Neutral Fe Kalpha Line Eq. Width > 1 keV (Z = 1) (wrt reflected continuum) Significant iron-K edge on reflected continuum, NFe ~ 2 x 1019 Fe cm-3
61
Alternative Model: Excitation by Cosmic-ray Electrons
Cosmic-ray electrons E ~ 10 keV – 1 GeV have significant cross-section for interaction with K-shell electrons (Valinia et al. 2000; Yusef-Zadeh et al. 2002) Such cosmic rays maybe produced in young, massive stellar clusters (Yusef-Zadeh 2003) Radio data establish a large population of GeV electrons in the inner 300 pc. Fe Models predict: Neutral Fe Kalpha Line Eq. Width ~ keV (Z = 1) Significantly smaller iron-K edge on non-thermal bremsstrahlung cont. Tatischeff 2005
62
Sgr B2 Giant Molecular Cloud
F line = 5.6 x 10-5 photon/cm2/s E.W. = 2.2 keV NFe = 3.4 x 1019 Fe cm-2 6.4 keV line Chandra Observations – Murakami et al. (2001)
63
6.4 keV Fe fluorescence line
Sgr A - Radio Arc Region Radio & 90 cm 90 cm 0.0o -0.2o 0.2o Galactic Latitude 6.4 keV Fe fluorescence line -0.2o Galactic Longitude
64
6.4 keV Fe fluorescence line
Sgr A - Radio Arc Region CS (J=1-0) km/s 0.0o -0.2o 0.2o 6.4 keV Fe line Galactic Latitude 6.4 keV Fe fluorescence line -0.2o Galactic Longitude
65
Correlation of the 4.5-6 keV X-ray continuum and the 6.4 keV line flux
4.5-6 keV Continuum Correlation of the keV X-ray continuum and the 6.4 keV line flux thermal non-thermal 6.4 keV Fe Line
66
X-ray Spectrum of G0.13-0.13 Cloud
S = -0.3 (not constrained) NH = 1.7 x 1023 H cm-3 Z = 2.9 pn MOS 1/2 Power-Law + Gaussian Line Model: Photon Index ~ 1.9 NH = 2.3 x 1023 H cm-2 Fline = 2.4 x 10-5 photon/cm2/s E.W. = 1.45 keV NFe < 1 x 1019 Fe cm-2
67
Correspondence of X-ray 6
Correspondence of X-ray 6.4 keV line with Molecular Gas measured in SiO J = 1-0 15-20 km/s 20-25 km/s 25-30 km/s 30-35 km/s 35-40 km/s 40-45 km/s 45-50 km/s 6.4 keV line Handa et al. (2005)
68
Distribution of 6.4 keV Iron Fluorescence near the Galactic Centre
90 light years Arches Cluster
69
Arches Cluster 2-6 keV CS J = 2 –1 20 – 40 km/s 0.0o +0.1o
Iron 6.7 keV line (black) Iron 6.4 keV line (blue)
70
Some Interesting Unresolved Questions Relating to Diffuse Galactic X-ray Emission
What is the origin of the Galactic X-ray halo and does the emission extend into the IGM of the Local Group and beyond? Can we determine the X-ray properties and nature of the extended Galactic Bulge against the confusion of LOOP 1? What is the origin of the Galactic X-ray Ridge? Is the bright central concentration of hard “thermal” emission seen at the Galactic Centre really due to a diffuse component? Is the iron-line fluorescence seen throughout the Galactic Centre Region excited by photon illumination or cosmic ray electrons?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.