Download presentation
Presentation is loading. Please wait.
180
Real Options: Fact and Fantasy
Aswath Damodaran
181
Underlying Theme: Searching for an Elusive Premium
Traditional discounted cashflow models under estimate the value of investments, where there are options embedded in the investments to Delay or defer making the investment (delay) Adjust or alter production schedules as price changes (flexibility) Expand into new markets or products at later stages in the process, based upon observing favorable outcomes at the early stages (expansion) Stop production or abandon investments if the outcomes are unfavorable at early stages (abandonment) Put another way, real option advocates believe that you should be paying a premium on discounted cashflow value estimates.
182
Three Basic Questions When is there a real option embedded in a decision or an asset? When does that real option have significant economic value? Can that value be estimated using an option pricing model?
183
When is there an option embedded in an action?
An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called a strike price or an exercise price) at or before the expiration date of the option. There has to be a clearly defined underlying asset whose value changes over time in unpredictable ways. The payoffs on this asset (real option) have to be contingent on an specified event occurring within a finite period.
184
Payoff Diagram on a Call
Net Payoff on Call Strike Price Price of underlying asset
185
Payoff Diagram on Put Option
Net Payoff On Put Strike Price Price of underlying asset
186
When does the option have significant economic value?
For an option to have significant economic value, there has to be a restriction on competition in the event of the contingency. In a perfectly competitive product market, no contingency, no matter how positive, will generate positive net present value. At the limit, real options are most valuable when you have exclusivity - you and only you can take advantage of the contingency. They become less valuable as the barriers to competition become less steep.
187
Determinants of option value
Variables Relating to Underlying Asset Value of Underlying Asset; as this value increases, the right to buy at a fixed price (calls) will become more valuable and the right to sell at a fixed price (puts) will become less valuable. Variance in that value; as the variance increases, both calls and puts will become more valuable because all options have limited downside and depend upon price volatility for upside. Expected dividends on the asset, which are likely to reduce the price appreciation component of the asset, reducing the value of calls and increasing the value of puts. Variables Relating to Option Strike Price of Options; the right to buy (sell) at a fixed price becomes more (less) valuable at a lower price. Life of the Option; both calls and puts benefit from a longer life. Level of Interest Rates; as rates increase, the right to buy (sell) at a fixed price in the future becomes more (less) valuable.
188
When can you use option pricing models to value real options?
The notion of a replicating portfolio that drives option pricing models makes them most suited for valuing real options where The underlying asset is traded - this yield not only observable prices and volatility as inputs to option pricing models but allows for the possibility of creating replicating portfolios An active marketplace exists for the option itself. The cost of exercising the option is known with some degree of certainty. When option pricing models are used to value real assets, we have to accept the fact that The value estimates that emerge will be far more imprecise. The value can deviate much more dramatically from market price because of the difficulty of arbitrage.
189
Creating a replicating portfolio
The objective in creating a replicating portfolio is to use a combination of riskfree borrowing/lending and the underlying asset to create the same cashflows as the option being valued. Call = Borrowing + Buying D of the Underlying Stock Put = Selling Short D on Underlying Asset + Lending The number of shares bought or sold is called the option delta. The principles of arbitrage then apply, and the value of the option has to be equal to the value of the replicating portfolio.
190
The Binomial Option Pricing Model
191
The Limiting Distributions….
As the time interval is shortened, the limiting distribution, as t -> 0, can take one of two forms. If as t -> 0, price changes become smaller, the limiting distribution is the normal distribution and the price process is a continuous one. If as t->0, price changes remain large, the limiting distribution is the poisson distribution, i.e., a distribution that allows for price jumps. The Black-Scholes model applies when the limiting distribution is the normal distribution , and explicitly assumes that the price process is continuous and that there are no jumps in asset prices.
192
The Black-Scholes Model
The version of the model presented by Black and Scholes was designed to value European options, which were dividend-protected. The value of a call option in the Black-Scholes model can be written as a function of the following variables: S = Current value of the underlying asset K = Strike price of the option t = Life to expiration of the option r = Riskless interest rate corresponding to the life of the option 2 = Variance in the ln(value) of the underlying asset
193
The Black Scholes Model
Value of call = S N (d1) - K e-rt N(d2) where, d2 = d1 - √t The replicating portfolio is embedded in the Black-Scholes model. To replicate this call, you would need to Buy N(d1) shares of stock; N(d1) is called the option delta Borrow K e-rt N(d2)
194
The Normal Distribution
195
Adjusting for Dividends
If the dividend yield (y = dividends/ Current value of the asset) of the underlying asset is expected to remain unchanged during the life of the option, the Black-Scholes model can be modified to take dividends into account. C = S e-yt N(d1) - K e-rt N(d2) where, d2 = d1 - √t The value of a put can also be derived: P = K e-rt (1-N(d2)) - S e-yt (1-N(d1))
196
Choice of Option Pricing Models
Most practitioners who use option pricing models to value real options argue for the binomial model over the Black-Scholes and justify this choice by noting that Early exercise is the rule rather than the exception with real options Underlying asset values are generally discontinous. If you can develop a binomial tree with outcomes at each node, it looks a great deal like a decision tree from capital budgeting. The question then becomes when and why the two approaches yield different estimates of value.
197
The Decision Tree Alternative
Traditional decision tree analysis tends to use One cost of capital to discount cashflows in each branch to the present Probabilities to compute an expected value These values will generally be different from option pricing model values If you modified decision tree analysis to Use different discount rates at each node to reflect where you are in the decision tree (This is the Copeland solution) (or) Use the riskfree rate to discount cashflows in each branch, estimate the probabilities to estimate an expected value and adjust the expected value for the market risk in the investment Decision Trees could yield the same values as option pricing models
198
Key Tests for Real Options
Is there an option embedded in this asset/ decision? Can you identify the underlying asset? Can you specify the contigency under which you will get payoff? Is there exclusivity? If yes, there is option value. If no, there is none. If in between, you have to scale value. Can you use an option pricing model to value the real option? Is the underlying asset traded? Can the option be bought and sold? Is the cost of exercising the option known and clear?
199
Option Pricing Applications in Investment/Strategic Analysis
200
Options in Projects/Investments/Acquisitions
One of the limitations of traditional investment analysis is that it is static and does not do a good job of capturing the options embedded in investment. The first of these options is the option to delay taking a investment, when a firm has exclusive rights to it, until a later date. The second of these options is taking one investment may allow us to take advantage of other opportunities (investments) in the future The last option that is embedded in projects is the option to abandon a investment, if the cash flows do not measure up. These options all add value to projects and may make a “bad” investment (from traditional analysis) into a good one. Most projects have one or more than one option embedded in them.
201
The Option to Delay When a firm has exclusive rights to a project or product for a specific period, it can delay taking this project or product until a later date. A traditional investment analysis just answers the question of whether the project is a “good” one if taken today. Thus, the fact that a project does not pass muster today (because its NPV is negative, or its IRR is less than its hurdle rate) does not mean that the rights to this project are not valuable. Traditional investment analysis just looks at the question of whether a project is a good one, if taken today. It does not say the rights to this project are worthless.
202
Valuing the Option to Delay a Project
PV of Cash Flows from Project Initial Investment in This looks at the option to delay a project, to which you have exclusive rights. The initial investment in the project is what you would need to invest to convert this project from a right to a real project. The present value of the cash flows will change over time. If the perceived present value of the cash flows stays below the investment needed, the project should never be taken. Project Present Value of Expected Cash Flows on Product Project's NPV turns Project has negative positive in this section NPV in this section
203
Insights for Investment Analyses
Having the exclusive rights to a product or project is valuable, even if the product or project is not viable today. The value of these rights increases with the volatility of the underlying business. The cost of acquiring these rights (by buying them or spending money on development, for instance) has to be weighed off against these benefits. The value of an option will increase with the uncertainty associated with the cash flows and value of the project. Thus, firms should be willing to pay large amounts for the rights to technology in areas where there is tremendous uncertainty about what the future will bring, and much less in sectors where there is more stability. The expenses incurred on R&D can be viewed as the cost of acquiring these rights.
204
Example 1: Valuing product patents as options
A product patent provides the firm with the right to develop the product and market it. It will do so only if the present value of the expected cash flows from the product sales exceed the cost of development. If this does not occur, the firm can shelve the patent and not incur any further costs. If I is the present value of the costs of developing the product, and V is the present value of the expected cashflows from development, the payoffs from owning a product patent can be written as: Payoff from owning a product patent = V - I if V> I = 0 if V ≤ I
205
Payoff on Product Option
Net Payoff to introduction Cost of product introduction Present Value of cashflows on product
206
Obtaining Inputs for Patent Valuation
207
Valuing a Product Patent: Avonex
Biogen, a bio-technology firm, has a patent on Avonex, a drug to treat multiple sclerosis, for the next 17 years, and it plans to produce and sell the drug by itself. The key inputs on the drug are as follows: PV of Cash Flows from Introducing the Drug Now = S = $ billion PV of Cost of Developing Drug for Commercial Use = K = $ billion Patent Life = t = 17 years Riskless Rate = r = 6.7% (17-year T.Bond rate) Variance in Expected Present Values =s2 = (Industry average firm variance for bio-tech firms) Expected Cost of Delay = y = 1/17 = 5.89% d1 = N(d1) = d2 = N(d2) = Call Value= 3,422 exp( )(17) (0.8720) - 2,875 (exp(-0.067)(17) (0.2076)= $ 907 million
208
Valuing a firm with patents
The value of a firm with a substantial number of patents can be derived using the option pricing model. Value of Firm = Value of commercial products (using DCF value + Value of existing patents (using option pricing) + (Value of New patents that will be obtained in the future – Cost of obtaining these patents) The last input measures the efficiency of the firm in converting its R&D into commercial products. If we assume that a firm earns its cost of capital from research, this term will become zero. If we use this approach, we should be careful not to double count and allow for a high growth rate in cash flows (in the DCF valuation).
209
Value of Biogen’s existing products
Biogen had two commercial products (a drug to treat Hepatitis B and Intron) at the time of this valuation that it had licensed to other pharmaceutical firms. The license fees on these products were expected to generate $ 50 million in after-tax cash flows each year for the next 12 years. To value these cash flows, which were guaranteed contractually, the pre-tax cost of debt of the guarantors (6.7%) was used: Present Value of License Fees = $ 50 million (1 – (1.067)-12)/.067 = $ million
210
Value of Biogen’s Future R&D
Biogen continued to fund research into new products, spending about $ 100 million on R&D in the most recent year. These R&D expenses were expected to grow 20% a year for the next 10 years, and 5% thereafter. It was assumed that every dollar invested in research would create $ 1.25 in value in patents (valued using the option pricing model described above) for the next 10 years, and break even after that (i.e., generate $ 1 in patent value for every $ 1 invested in R&D). There was a significant amount of risk associated with this component and the cost of capital was estimated to be 15%.
211
Value of Future R&D Yr Value of R&D Cost Excess Value Present Value
Patents (at 15%) 1 $ $ $ $ 2 $ $ $ $ 3 $ $ $ $ 4 $ $ $ $ 5 $ $ $ $ 6 $ $ $ $ 7 $ $ $ $ 8 $ $ $ $ 9 $ $ $ $ 10 $ $ $ $ $
212
Value per share = $ 1,628.86 million / 35.5 = $ 45.88
Value of Biogen The value of Biogen as a firm is the sum of all three components – the present value of cash flows from existing products, the value of Avonex (as an option) and the value created by new research: Value = Existing products + Existing Patents + Value: Future R&D = $ million + $ 907 million + $ million = $ million Since Biogen had no debt outstanding, this value was divided by the number of shares outstanding (35.50 million) to arrive at a value per share: Value per share = $ 1, million / 35.5 = $ 45.88
213
The Real Options Test: Patents and Technology
The Option Test: Underlying Asset: Product that would be generated by the patent Contingency: If PV of CFs from development > Cost of development: PV - Cost If PV of CFs from development < Cost of development: 0 The Exclusivity Test: Patents restrict competitors from developing similar products Patents do not restrict competitors from developing other products to treat the same disease. The Pricing Test Underlying Asset: Patents are not traded. Not only do you therefore have to estimate the present values and volatilities yourself, you cannot construct replicating positions or do arbitrage. Option: Patents are bought and sold, though not as frequently as oil reserves or mines. Cost of Exercising the Option: This is the cost of converting the patent for commercial production. Here, experience does help and drug firms can make fairly precise estimates of the cost. Conclusion: You can estimate the value of the real option but the quality of your estimate will be a direct function of the quality of your capital budgeting. It works best if you are valuing a publicly traded firm that generates most of its value from one or a few patents - you can use the market value of the firm and the variance in that value then in your option pricing model.
214
Example 2: Valuing Natural Resource Options
In a natural resource investment, the underlying asset is the resource and the value of the asset is based upon two variables - the quantity of the resource that is available in the investment and the price of the resource. In most such investments, there is a cost associated with developing the resource, and the difference between the value of the asset extracted and the cost of the development is the profit to the owner of the resource. Defining the cost of development as X, and the estimated value of the resource as V, the potential payoffs on a natural resource option can be written as follows: Payoff on natural resource investment = V - X if V > X = 0 if V≤ X
215
Payoff Diagram on Natural Resource Firms
Net Payoff on Extraction Cost of Developing Reserve Value of estimated reserve of natural resource
216
Estimating Inputs for Natural Resource Options
217
Valuing an Oil Reserve Consider an offshore oil property with an estimated oil reserve of 50 million barrels of oil, where the present value of the development cost is $12 per barrel and the development lag is two years. The firm has the rights to exploit this reserve for the next twenty years and the marginal value per barrel of oil is $12 per barrel currently (Price per barrel - marginal cost per barrel). Once developed, the net production revenue each year will be 5% of the value of the reserves. The riskless rate is 8% and the variance in ln(oil prices) is 0.03.
218
Inputs to Option Pricing Model
Current Value of the asset = S = Value of the developed reserve discounted back the length of the development lag at the dividend yield = $12 * 50 /(1.05)2 = $ (If development is started today, the oil will not be available for sale until two years from now. The estimated opportunity cost of this delay is the lost production revenue over the delay period. Hence, the discounting of the reserve back at the dividend yield) Exercise Price = Present Value of development cost = $12 * 50 = $600 million Time to expiration on the option = 20 years Variance in the value of the underlying asset = 0.03 Riskless rate =8% Dividend Yield = Net production revenue / Value of reserve = 5%
219
Valuing the Option Based upon these inputs, the Black-Scholes model provides the following value for the call: d1 = N(d1) = d2 = N(d2) = Call Value= exp(-0.05)(20) (0.8498) -600 (exp(-0.08)(20) (0.6030)= $ million This oil reserve, though not viable at current prices, still is a valuable property because of its potential to create value if oil prices go up.
220
Extending the option pricing approach to value natural resource firms
Since the assets owned by a natural resource firm can be viewed primarily as options, the firm itself can be valued using option pricing models. The preferred approach would be to consider each option separately, value it and cumulate the values of the options to get the firm value. Since this information is likely to be difficult to obtain for large natural resource firms, such as oil companies, which own hundreds of such assets, a variant is to value the entire firm as one option. A purist would probably disagree, arguing that valuing an option on a portfolio of assets (as in this approach) will provide a lower value than valuing a portfolio of options (which is what the natural resource firm really own). Nevertheless, the value obtained from the model still provides an interesting perspective on the determinants of the value of natural resource firms.
221
Inputs to the Model Input to model Corresponding input for valuing firm Value of underlying asset Value of cumulated estimated reserves of the resource owned by the firm, discounted back at the dividend yield for the development lag. Exercise Price Estimated cumulated cost of developing estimated reserves Time to expiration on option Average relinquishment period across all reserves owned by firm (if known) or estimate of when reserves will be exhausted, given current production rates. Riskless rate Riskless rate corresponding to life of the option Variance in value of asset Variance in the price of the natural resource Dividend yield Estimated annual net production revenue as percentage of value of the reserve.
222
Valuing Gulf Oil Gulf Oil was the target of a takeover in early 1984 at $70 per share (It had million shares outstanding, and total debt of $9.9 billion). It had estimated reserves of 3038 million barrels of oil and the average cost of developing these reserves was estimated to be $10 a barrel in present value dollars (The development lag is approximately two years). The average relinquishment life of the reserves is 12 years. The price of oil was $22.38 per barrel, and the production cost, taxes and royalties were estimated at $7 per barrel. The bond rate at the time of the analysis was 9.00%. Gulf was expected to have net production revenues each year of approximately 5% of the value of the developed reserves. The variance in oil prices is 0.03.
223
Valuing Undeveloped Reserves
Inputs for valuing undeveloped reserves Value of underlying asset = Value of estimated reserves discounted back for period of development lag= 3038 * ($ $7) / = $42,380.44 Exercise price = Estimated development cost of reserves = 3038 * $10 = $30,380 million Time to expiration = Average length of relinquishment option = 12 years Variance in value of asset = Variance in oil prices = 0.03 Riskless interest rate = 9% Dividend yield = Net production revenue/ Value of developed reserves = 5% Based upon these inputs, the Black-Scholes model provides the following value for the call: d1 = N(d1) = d2 = N(d2) = Call Value= 42, exp(-0.05)(12) (0.9510) -30,380 (exp(-0.09)(12) (0.8542)= $ 13,306 million
224
Valuing Gulf Oil In addition, Gulf Oil had free cashflows to the firm from its oil and gas production of $915 million from already developed reserves and these cashflows are likely to continue for ten years (the remaining lifetime of developed reserves). The present value of these developed reserves, discounted at the weighted average cost of capital of 12.5%, yields: Value of already developed reserves = 915 ( )/.125 = $ Adding the value of the developed and undeveloped reserves Value of undeveloped reserves = $ 13,306 million Value of production in place = $ 5,066 million Total value of firm = $ 18,372 million Less Outstanding Debt = $ 9,900 million Value of Equity = $ 8,472 million Value per share = $ 8,472/ = $51.25
225
Putting Natural Resource Options to the Test
The Option Test: Underlying Asset: Oil or gold in reserve Contingency: If value > Cost of development: Value - Dev Cost If value < Cost of development: 0 The Exclusivity Test: Natural resource reserves are limited (at least for the short term) It takes time and resources to develop new reserves The Option Pricing Test Underlying Asset: While the reserve or mine may not be traded, the commodity is. If we assume that we know the quantity with a fair degree of certainty, you can trade the underlying asset Option: Oil companies buy and sell reserves from each other regularly. Cost of Exercising the Option: This is the cost of developing a reserve. Given the experience that commodity companies have with this, they can estimate this cost with a fair degree of precision. Real option pricing models work well with natural resource options.
226
The Option to Expand/Take Other Projects
Taking a project today may allow a firm to consider and take other valuable projects in the future. Thus, even though a project may have a negative NPV, it may be a project worth taking if the option it provides the firm (to take other projects in the future) provides a more-than-compensating value. These are the options that firms often call “strategic options” and use as a rationale for taking on “negative NPV” or even “negative return” projects. A project may be the first in a sequence.
227
The Option to Expand PV of Cash Flows from Expansion
Additional Investment Here, the initial project gives you the option to invest an additional amount in the future which you will do only if the present value of the additional cash flows you will get by expanding are greater than the investment needed. For this to work, you have to do the first project to be eligible for the option to expand. to Expand Present Value of Expected Cash Flows on Expansion Expansion becomes Firm will not expand in attractive in this section this section
228
An Example of an Expansion Option
Ambev is considering introducing a soft drink to the U.S. market. The drink will initially be introduced only in the metropolitan areas of the U.S. and the cost of this “limited introduction” is $ 500 million. A financial analysis of the cash flows from this investment suggests that the present value of the cash flows from this investment to Ambev will be only $ 400 million. Thus, by itself, the new investment has a negative NPV of $ 100 million. If the initial introduction works out well, Ambev could go ahead with a full-scale introduction to the entire market with an additional investment of $ 1 billion any time over the next 5 years. While the current expectation is that the cash flows from having this investment is only $ 750 million, there is considerable uncertainty about both the potential for the drink, leading to significant variance in this estimate. This is a negative net present value project, but it gives Disney the option to expand later. Implicitly, we are also saying that if Disney does not make the initial project investment (with a NPV of - $ 20 million), it cannot expand later into the rest of Latin America.
229
Valuing the Expansion Option
Value of the Underlying Asset (S) = PV of Cash Flows from Expansion to entire U.S. market, if done now =$ 750 Million Strike Price (K) = Cost of Expansion into entire U.S market = $ 1000 Million We estimate the standard deviation in the estimate of the project value by using the annualized standard deviation in firm value of publicly traded firms in the beverage markets, which is approximately 34.25%. Standard Deviation in Underlying Asset’s Value = 34.25% Time to expiration = Period for which expansion option applies = 5 years Call Value= $ 234 Million This values the option, using the Black Scholes model. The value from the model itself is affected not only by the assumptions made about volatility and value, but also by the asssumptions underlying the model. The value itself is not the key output from the model. It is the fact that strategic options, such as this one, can be valued, and that they can make a significant difference to your decision.
230
Considering the Project with Expansion Option
NPV of Limited Introduction = $ 400 Million - $ 500 Million = - $ 100 Million Value of Option to Expand to full market= $ 234 Million NPV of Project with option to expand = - $ 100 million + $ 234 million = $ 134 million Invest in the project A bad project, with options considered, becomes a good one.
231
The Real Options Test for Expansion Options
The Options Test Underlying Asset: Expansion Project Contingency If PV of CF from expansion > Expansion Cost: PV - Expansion Cost If PV of CF from expansion < Expansion Cost: 0 The Exclusivity Test Barriers may range from strong (exclusive licenses granted by the government) to weaker (brand name, knowledge of the market) to weakest (first mover). The Pricing Test Underlying Asset: As with patents, there is no trading in the underlying asset and you have to estimate value and volatility. Option: Licenses are sometimes bought and sold, but more diffuse expansion options are not. Cost of Exercising the Option: Not known with any precision and may itself evolve over time as the market evolves. Using option pricing models to value expansion options will not only yield extremely noisy estimates, but may attach inappropriate premiums to discounted cashflow estimates.
232
Opportunities and not Options…
233
Internet Firms as Options
Some analysts have justified the valuation of internet firms on the basis that you are buying the option to expand into a very large market. What do you think of this argument? Is there an option to expand embedded in these firms? Is it a valuable option?
234
The Option to Abandon A firm may sometimes have the option to abandon a project, if the cash flows do not measure up to expectations. If abandoning the project allows the firm to save itself from further losses, this option can make a project more valuable. PV of Cash Flows from Project You would like to abandon a project, once you know that it will create only negative cash flows for you. This is not always possible, because of contracts you might have entered into with employees or customers. Cost of Abandonment Present Value of Expected Cash Flows on Project
235
Valuing the Option to Abandon
Embraer is considering a joint venture with Lear Aircraft to produce a small commercial airplane (capable of carrying passengers on short haul flights) Embraer will have to invest $ 500 million for a 50% share of the venture Its share of the present value of expected cash flows is 480 million. Lear Aircraft, which is eager to enter into the deal, offers to buy Embraer’s 50% share of the investment anytime over the next five years for $ 400 million, if Embraer decides to get out of the venture. A simulation of the cash flows on this time share investment yields a variance in the present value of the cash flows from being in the partnership is 0.16. The project has a life of 30 years. We are assuming that the developer will be in a position to honor his or her commitment to buy back Disney’s share for $ 150 million.
236
Project with Option to Abandon
Value of the Underlying Asset (S) = PV of Cash Flows from Project = $ 480 million Strike Price (K) = Salvage Value from Abandonment = $ 400 million Variance in Underlying Asset’s Value = 0.16 Time to expiration = Life of the Project =5 years Dividend Yield = 1/Life of the Project = 1/30 = (We are assuming that the project’s present value will drop by roughly 1/n each year into the project) Assume that the five-year riskless rate is 6%. The value of the put option can be estimated as follows: These are the inputs to the model. The likelihood of abandonment will increase over time, as the value of the project decreases.
237
Should Embraer enter into the joint venture?
Value of Put =Ke-rt (1-N(d2))- Se-yt (1-N(d1)) =400 (exp(-0.06)(5) ( ) exp(-0.033)(5) ( ) = $ million The value of this abandonment option has to be added on to the net present value of the project of -$ 20 million, yielding a total net present value with the abandonment option of $ million. If you can negotiate this option into your investment projects, you increase their value. To the degree that you have to pay for this option, you would be willing to pay up to $ 7.86 million.
238
Implications for Investment Analysis
Having a option to abandon a project can make otherwise unacceptable projects acceptable. Actions that increase the value of the abandonment option include More cost flexibility, that is, making more of the costs of the projects into variable costs as opposed to fixed costs. Fewer long-term contracts/obligations with employees and customers, since these add to the cost of abandoning a project Finding partners in the investment, who are willing to acquire your investment in the future These actions will undoubtedly cost the firm some value, but this has to be weighed off against the increase in the value of the abandonment option.
239
Option Pricing Applications in the Capital Structure Decision
240
Options in Capital Structure
The most direct applications of option pricing in capital structure decisions is in the design of securities. In fact, most complex financial instruments can be broken down into some combination of a simple bond/common stock and a variety of options. If these securities are to be issued to the public, and traded, the options have to be priced. If these are non-traded instruments (bank loans, for instance), they still have to be priced into the interest rate on the instrument. The other application of option pricing is in valuing flexibility. Often, firms preserve debt capacity or hold back on issuing debt because they want to maintain flexibility.
241
The Value of Flexibility
Firms maintain excess debt capacity or larger cash balances than are warranted by current needs, to meet unexpected future requirements. While maintaining this financing flexibility has value to firms, it also has a cost; the excess debt capacity implies that the firm is giving up some value and has a higher cost of capital. The value of flexibility can be analyzed using the option pricing framework; a firm maintains large cash balances and excess debt capacity in order to have the option to take projects that might arise in the future.
242
Determinants of Value of Flexibility Option
Quality of the Firm’s Projects: It is the excess return that the firm earns on its projects that provides the value to flexibility. Other things remaining equal, firms operating in businesses where projects earn substantially higher returns than their hurdle rates should value flexibility more than those that operate in stable businesses where excess returns are small. Uncertainty about Future Projects: If flexibility is viewed as an option, its value will increase when there is greater uncertainty about future projects; thus, firms with predictable capital expenditures and excess returns should value flexibility less than those with high variability in both of those variables.
243
Value of Flexibility as an Option
Consider a firm that has expected reinvestment needs of X each year, with a standard deviation in that value of sX. These external reinvestments include both internal projects and acquisitions. Assume that the firm can raise L from internal cash flows and its normal access to capital markets. (Normal access refers to the external financing that is used by a firm each year) Excess debt capacity becomes useful if external reinvestment needs exceed the firm’s internal funds. If X > L: Excess debt capacity can be used to cover the difference and invest in projects If X<L: Excess debt capacity remains unused (with an associated cost)
244
What happens when you make the investment?
If the investment earns excess returns, the firm’s value will increase by the present value of these excess returns over time. If we assume that the excess return each year is constant and perpetual, the present value of the excess returns that would be earned can be written as: Value of investment = (ROC - Cost of capital)/ Cost of capital The value of the investments that you can take because you have excess debt capacity becomes the payoff to maintaining excess debt capacity. If X > L: [(ROC - Cost of capital)/ Cost of capital] New investments If X<L: 0
245
The Value of Flexibility
246
Disney’s Optimal Debt Ratio
Debt Ratio Cost of Equity Cost of Debt Cost of Capital 0.00% 13.00% 4.61% 13.00% 10.00% 13.43% 4.61% 12.55% Current:18%13.85% 4.80% 12.22% 20.00% 13.96% 4.99% 12.17% 30.00% 14.65% 5.28% 11.84% 40.00% 15.56% 5.76% 11.64% 50.00% 16.85% 6.56% 11.70% 60.00% 18.77% 7.68% 12.11% 70.00% 21.97% 7.68% 11.97% 80.00% 28.95% 7.97% 12.17% 90.00% 52.14% 9.42% 13.69%
247
Inputs to Option Valuation Model
One way to think about firms that preserve debt capacity because they want flexibility is that they are foregoing use this debt to invest in existing projects at existing excess returns because they think that they might have an increase in either investment needs or excess returns. To value flexibility as a percent of firm value (as an annual cost), these would be the inputs to the model: S = Expected Reinvestment needs as percent of Firm Value K = Expected Reinvestment needs that can be financed without financing flexibility t = 1 year s2 = Variance in ln(Net Capital Expenditures) Once this option has been valued, estimate the present value of the excess returns that will be gained by taking the additional investments by multiplying by (ROC - WACC)/WACC
248
The Inputs for Disney Expected reinvestment needs as a percent of firm value: Over the last 5 years, reinvestment (net cap ex, acquisitions and changes in working capital) has been approximately 5.3% of firm value I am assuming that this is the expected reinvestment need; the variance in ln(reinvestment) over the last 5 years is 0.375 Reinvestment needs that can be financed without flexibility. We looked at internal funds, after debt payments but before reinvestment needs, as a percent of firm value over the last 5 years. (Internal funds = (Net Income + Depreciation)/Market Value of the Firm) We looked at net debt financing each period, as a percent of firm value (as a measure of access to external financing each year). (New Debt - Debt Repaid)/Market Value of Firm) Reinvestment needs that can be financed without flexibility = (Net Income + Depreciation + Net Debt Issued)/Market Value of Firm This number has averaged 4.8%, over the last 5 years
249
Valuing Flexibility at Disney
The value of flexibility as a percentage of firm value can be estimated as follows: S = 5.3% K = 4.8% t = 1 year s2 = ( Variance in ln(Reinvestment Needs/Firm Value)) The value of an option with these characteristics is % Disney earns 18.69% on its projects has a cost of capital of 12.22%. The excess return (annually) is 6.47%. Value of Flexibility (annual)= %(.0647/.1222) = 0.85 % of value Disney’s cost of capital at its optimal debt ratio is 11.64%. The cost it incurs to maintain flexibility is therefore 0.58% annually (12.22%-11.64%). It therefore pays to maintain flexibility.
250
Determinants of the Value of Flexibility
Capacity to raise funds to meet financing needs: The greater the capacity to raise funds, either internally or externally, the less the value of flexibility. 1.1: Firms with significant internal operating cash flows should value flexibility less than firms with small or negative operating cash flows. 1.2: Firms with easy access to financial markets should have a lower value for flexibility than firms without that access. Unpredictability of reinvestment needs: The more unpredictable the reinvestment needs of a firm, the greater the value of flexibility. Capacity to earn excess returns: The greater the capacity to earn excess returns, the greater the value of flexibility. 1.3: Firms that do not have the capacity to earn or sustain excess returns get no value from flexibility.
251
Option Pricing Applications in Valuation
Equity Value in Deeply Troubled Firms Value of Undeveloped Reserves for Natural Resource Firm Value of Patent/License
252
Option Pricing Applications in Equity Valuation
Equity in a troubled firm (i.e. a firm with high leverage, negative earnings and a significant chance of bankruptcy) can be viewed as a call option, which is the option to liquidate the firm. Natural resource companies, where the undeveloped reserves can be viewed as options on the natural resource. Start-up firms or high growth firms which derive the bulk of their value from the rights to a product or a service (eg. a patent)
253
Valuing Equity as an option
The equity in a firm is a residual claim, i.e., equity holders lay claim to all cashflows left over after other financial claim-holders (debt, preferred stock etc.) have been satisfied. If a firm is liquidated, the same principle applies, with equity investors receiving whatever is left over in the firm after all outstanding debts and other financial claims are paid off. The principle of limited liability, however, protects equity investors in publicly traded firms if the value of the firm is less than the value of the outstanding debt, and they cannot lose more than their investment in the firm.
254
Equity as a call option The payoff to equity investors, on liquidation, can therefore be written as: Payoff to equity on liquidation = V - D if V > D = 0 if V ≤ D where, V = Value of the firm D = Face Value of the outstanding debt and other external claims A call option, with a strike price of K, on an asset with a current value of S, has the following payoffs: Payoff on exercise = S - K if S > K = 0 if S ≤ K
255
Payoff Diagram for Liquidation Option
256
Application to valuation: A simple example
Assume that you have a firm whose assets are currently valued at $100 million and that the standard deviation in this asset value is 40%. Further, assume that the face value of debt is $80 million (It is zero coupon debt with 10 years left to maturity). If the ten-year treasury bond rate is 10%, how much is the equity worth? What should the interest rate on debt be?
257
Model Parameters Value of the underlying asset = S = Value of the firm = $ 100 million Exercise price = K = Face Value of outstanding debt = $ 80 million Life of the option = t = Life of zero-coupon debt = 10 years Variance in the value of the underlying asset = 2 = Variance in firm value = 0.16 Riskless rate = r = Treasury bond rate corresponding to option life = 10%
258
Valuing Equity as a Call Option
Based upon these inputs, the Black-Scholes model provides the following value for the call: d1 = N(d1) = d2 = N(d2) = Value of the call = 100 (0.9451) - 80 exp(-0.10)(10) (0.6310) = $75.94 million Value of the outstanding debt = $100 - $75.94 = $24.06 million Interest rate on debt = ($ 80 / $24.06)1/10 -1 = 12.77%
259
The Effect of Catastrophic Drops in Value
Assume now that a catastrophe wipes out half the value of this firm (the value drops to $ 50 million), while the face value of the debt remains at $ 80 million. What will happen to the equity value of this firm? It will drop in value to $ million [ $ 50 million - market value of debt from previous page] It will be worth nothing since debt outstanding > Firm Value It will be worth more than $ million
260
Illustration : Value of a troubled firm
Assume now that, in the previous example, the value of the firm were reduced to $ 50 million while keeping the face value of the debt at $80 million. This firm could be viewed as troubled, since it owes (at least in face value terms) more than it owns. The equity in the firm will still have value, however.
261
Valuing Equity in the Troubled Firm
Value of the underlying asset = S = Value of the firm = $ 50 million Exercise price = K = Face Value of outstanding debt = $ 80 million Life of the option = t = Life of zero-coupon debt = 10 years Variance in the value of the underlying asset = 2 = Variance in firm value = 0.16 Riskless rate = r = Treasury bond rate corresponding to option life = 10%
262
The Value of Equity as an Option
Based upon these inputs, the Black-Scholes model provides the following value for the call: d1 = N(d1) = d2 = N(d2) = Value of the call = 50 (0.8534) - 80 exp(-0.10)(10) (0.4155) = $30.44 million Value of the bond= $50 - $30.44 = $19.56 million The equity in this firm drops by, because of the option characteristics of equity. This might explain why stock in firms, which are in Chapter 11 and essentially bankrupt, still has value.
263
Equity value persists ..
264
Valuing equity in a troubled firm
The first implication is that equity will have value, even if the value of the firm falls well below the face value of the outstanding debt. Such a firm will be viewed as troubled by investors, accountants and analysts, but that does not mean that its equity is worthless. Just as deep out-of-the-money traded options command value because of the possibility that the value of the underlying asset may increase above the strike price in the remaining lifetime of the option, equity will command value because of the time premium on the option (the time until the bonds mature and come due) and the possibility that the value of the assets may increase above the face value of the bonds before they come due.
265
Obtaining option pricing inputs - Some real world problems
The examples that have been used to illustrate the use of option pricing theory to value equity have made some simplifying assumptions. Among them are the following: (1) There were only two claim holders in the firm - debt and equity. (2) There is only one issue of debt outstanding and it can be retired at face value. (3) The debt has a zero coupon and no special features (convertibility, put clauses etc.) (4) The value of the firm and the variance in that value can be estimated.
266
Real World Approaches to Getting inputs
267
Valuing Equity as an option - Eurotunnel in early 1998
Eurotunnel has been a financial disaster since its opening In 1997, Eurotunnel had earnings before interest and taxes of -£56 million and net income of -£685 million At the end of 1997, its book value of equity was -£117 million It had £8,865 million in face value of debt outstanding The weighted average duration of this debt was years Debt Type Face Value Duration Short term 10 year 20 year Longer Total £8,865 mil years
268
The Basic DCF Valuation
The value of the firm estimated using projected cashflows to the firm, discounted at the weighted average cost of capital was £2,312 million. This was based upon the following assumptions – Revenues will grow 5% a year in perpetuity. The COGS which is currently 85% of revenues will drop to 65% of revenues in yr 5 and stay at that level. Capital spending and depreciation will grow 5% a year in perpetuity. There are no working capital requirements. The debt ratio, which is currently 95.35%, will drop to 70% after year 5. The cost of debt is 10% in high growth period and 8% after that. The beta for the stock will be 1.10 for the next five years, and drop to 0.8 after the next 5 years. The long term bond rate is 6%.
269
Other Inputs The stock has been traded on the London Exchange, and the annualized std deviation based upon ln (prices) is 41%. There are Eurotunnel bonds, that have been traded; the annualized std deviation in ln(price) for the bonds is 17%. The correlation between stock price and bond price changes has been 0.5. The proportion of debt in the capital structure during the period ( ) was 85%. Annualized variance in firm value = (0.15)2 (0.41)2 + (0.85)2 (0.17)2 + 2 (0.15) (0.85)(0.5)(0.41)(0.17)= The 15-year bond rate is 6%. (I used a bond with a duration of roughly 11 years to match the life of my option)
270
Valuing Eurotunnel Equity and Debt
Inputs to Model Value of the underlying asset = S = Value of the firm = £2,312 million Exercise price = K = Face Value of outstanding debt = £8,865 million Life of the option = t = Weighted average duration of debt = years Variance in the value of the underlying asset = 2 = Variance in firm value = Riskless rate = r = Treasury bond rate corresponding to option life = 6% Based upon these inputs, the Black-Scholes model provides the following value for the call: d1 = N(d1) = d2 = N(d2) = Value of the call = 2312 (0.2023) - 8,865 exp(-0.06)(10.93) (0.0751) = £122 million Appropriate interest rate on debt = (8865/2190)(1/10.93)-1= 13.65%
271
In Closing… There are real options everywhere.
Most of them have no significant economic value because there is no exclusivity associated with using them. When options have significant economic value, the inputs needed to value them in a binomial model can be used in more traditional approaches (decision trees) to yield equivalent value. The real value from real options lies in Recognizing that building in flexibility and escape hatches into large decisions has value Insights we get on understanding how and why companies behave the way they do in investment analysis and capital structure choices.
272
Back to Lemmings...
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.