Download presentation
Presentation is loading. Please wait.
1
Sorting Algorithms Bubble Sort Merge Sort Quick Sort Randomized Quick Sort
2
2 Overview Bubble Sort Divide and Conquer Merge Sort Quick Sort Randomization
3
3 Sorting Sorting takes an unordered collection and makes it an ordered one. 5 12 3542 77 101 1 2 3 4 5 6 5 12 35 42 77101 1 2 3 4 5 6
4
4 "Bubbling Up" the Largest Element Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3542 77 101 1 2 3 4 5 6
5
5 "Bubbling Up" the Largest Element Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3542 77 101 1 2 3 4 5 6 Swap 4277
6
6 "Bubbling Up" the Largest Element Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3577 42 101 1 2 3 4 5 6 Swap 3577
7
7 "Bubbling Up" the Largest Element Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 7735 42 101 1 2 3 4 5 6 Swap 1277
8
8 "Bubbling Up" the Largest Element Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 5 77 1235 42 101 1 2 3 4 5 6 No need to swap
9
9 "Bubbling Up" the Largest Element Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 5 77 1235 42 101 1 2 3 4 5 6 Swap 5101
10
10 "Bubbling Up" the Largest Element Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 77 1235 42 5 1 2 3 4 5 6 101 Largest value correctly placed
11
11 The “Bubble Up” Algorithm index <- 1 last_compare_at <- n – 1 loop exitif(index > last_compare_at) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop
12
12 No, Swap isn’t built in. Procedure Swap(a, b isoftype in/out Num) t isoftype Num t <- a a <- b b <- t endprocedure // Swap
13
13 Items of Interest Notice that only the largest value is correctly placed All other values are still out of order So we need to repeat this process 77 1235 42 5 1 2 3 4 5 6 101 Largest value correctly placed
14
14 Repeat “Bubble Up” How Many Times? If we have N elements… And if each time we bubble an element, we place it in its correct location… Then we repeat the “bubble up” process N – 1 times. This guarantees we’ll correctly place all N elements.
15
15 “Bubbling” All the Elements 77 1235 42 5 1 2 3 4 5 6 101 5 4212 35 77 1 2 3 4 5 6 10142 5 35 12 77 1 2 3 4 5 6 10142 35 5 12 77 1 2 3 4 5 6 10142 35 12 5 77 1 2 3 4 5 6 101 N - 1
16
16 Reducing the Number of Comparisons 12 35 42 77 101 1 2 3 4 5 6 577 1235 42 5 1 2 3 4 5 6 101 5 4212 35 77 1 2 3 4 5 6 10142 5 35 12 77 1 2 3 4 5 6 10142 35 5 12 77 1 2 3 4 5 6 101
17
17 Reducing the Number of Comparisons On the N th “bubble up”, we only need to do MAX-N comparisons. For example: This is the 4 th “bubble up” MAX is 6 Thus we have 2 comparisons to do 42 5 35 12 77 1 2 3 4 5 6 101
18
18 N is … // Size of Array Arr_Type definesa Array[1..N] of Num Procedure Swap(n1, n2 isoftype Num) temp isoftype Num temp <- n1 n1 <- n2 n2 <- temp endprocedure // Swap Putting It All Together
19
19 The Truth NOBODY EVER uses Bubble Sort (except for Ezra) NOBODY NOT EVER Because it is EXTREMELY INEFFICIENT
20
20 This is how it goes…
21
21 Comparison (semi-log y axis)
22
22 Let’s forget about Bubble Sort
23
23 Divide and Conquer 1.Base Case, solve the problem directly if it is small enough 1.Divide the problem into two or more similar and smaller subproblems 1.Recursively solve the subproblems 1.Combine solutions to the subproblems
24
24 Divide and Conquer - Sort Problem: Input: A[left..right] – unsorted array of integers Output: A[left..right] – sorted in non-decreasing order
25
25 Divide and Conquer - Sort 1. Base case at most one element (left ≥ right), return 2. Divide A into two subarrays: FirstPart, SecondPart Two Subproblems: sort the FirstPart sort the SecondPart 3. Recursively sort FirstPart sort SecondPart 4. Combine sorted FirstPart and sorted SecondPart
26
26 This reminds me of… That’s easy. Mariah Carey. As a singing star, Ms. Carey has perfected the “wax-on” wave motion--a clockwise sweep of her hand used to emphasize lyrics. The Maria “Wax-on” Angle: ( ,t) The Siren of Subquadratic Sorts
27
27 How To Remember Merge Sort? Just as Mariah recursively moves her hands into smaller circles, so too does merge sort recursively split an array into smaller segments. ( ,t) We need two such recursions, one for each half of the split array.
28
28 Overview Divide and Conquer Merge Sort Quick Sort Randomization
29
29 Merge Sort: Idea Merge Recursively sort Divide into two halves FirstPart SecondPart FirstPart SecondPart A A is sorted!
30
30 Merge Sort: Algorithm Merge-Sort (A, left, right) if left ≥ right return else middle ← b (left+right)/2 Merge-Sort(A, left, middle) Merge-Sort(A, middle+1, right) Merge(A, left, middle, right) Recursive Call
31
31 A[middle] A[left] Sorted FirstPart Sorted SecondPart Merge-Sort: Merge A[right] merge A: A: Sorted
32
32 6101422 351528 L:R: Temporary Arrays 515283061014 5 Merge-Sort: Merge Example 23781456A:
33
33 Merge-Sort: Merge Example 3515283061014L: A: 3152830 6101422R: i=0 j=0 k=0 2378 1456 1
34
34 Merge-Sort: Merge Example 1515283061014L: A: 351528 6101422R: k=1 2378 1456 2 i=0 j=1
35
35 Merge-Sort: Merge Example 1215283061014L: A: 6101422R: i=1 k=2 2378 1456 3 j=1
36
36 Merge-Sort: Merge Example 12361014L: A: 6101422R: i=2 j=1 k=3 2378 1456 4
37
37 Merge-Sort: Merge Example 123461014L: A: 6101422R: j=2 k=4 2378 1456 i=2 5
38
38 Merge-Sort: Merge Example 1234561014L: A: 6101422R: i=2 j=3 k=5 2378 1456 6
39
39 Merge-Sort: Merge Example 12345614L: A: 6101422R: k=6 2378 1456 7 i=2 j=4
40
40 Merge-Sort: Merge Example 123456714L: A: 351528 6101422R: 2378 1456 8 i=3 j=4 k=7
41
41 Merge-Sort: Merge Example 12345678L: A: 351528 6101422R: 2378 1456 i=4 j=4 k=8
42
42 Merge(A, left, middle, right) 1. n 1 ← middle – left + 1 2. n 2 ← right – middle 3. create array L[n 1 ], R[n 2 ] 4. for i ← 0 to n 1 -1 do L[i] ← A[left +i] 5. for j ← 0 to n 2 -1 do R[j] ← A[middle+j] 6. k ← i ← j ← 0 7. while i < n 1 & j < n 2 8. if L[i] < R[j] 9. A[k++] ← L[i++] 10. else 11. A[k++] ← R[j++] 12. while i < n 1 13. A[k++] ← L[i++] 14. while j < n 2 15. A[k++] ← R[j++] n = n 1 +n 2 Space: n Time : cn for some constant c
43
43 6 2 8 4 3 7 5 1 6 2 8 4 3 7 5 1 Merge-Sort(A, 0, 7) Divide A:
44
44 6 2 8 4 3 7 5 1 6 2 8484 Merge-Sort(A, 0, 3), divide A: Merge-Sort(A, 0, 7)
45
45 3 7 5 1 8484 6 262 Merge-Sort(A, 0, 1), divide A: Merge-Sort(A, 0, 7)
46
46 3 7 5 1 8484 62 Merge-Sort(A, 0, 0), base case A: Merge-Sort(A, 0, 7)
47
47 3 7 5 1 8484 62 Merge-Sort(A, 0, 0), return A: Merge-Sort(A, 0, 7)
48
48 3 7 5 1 8484 62 Merge-Sort(A, 1, 1), base case A: Merge-Sort(A, 0, 7)
49
49 3 7 5 1 8484 62 Merge-Sort(A, 1, 1), return A: Merge-Sort(A, 0, 7)
50
50 3 7 5 1 8484 2626 Merge(A, 0, 0, 1) A: Merge-Sort(A, 0, 7)
51
51 3 7 5 1 8484 2626 Merge-Sort(A, 0, 1), return A: Merge-Sort(A, 0, 7)
52
52 3 7 5 1 8484 2626 Merge-Sort(A, 2, 3) 48, divide A: Merge-Sort(A, 0, 7)
53
53 3 7 5 1 4 2626 8 Merge-Sort(A, 2, 2), base case A: Merge-Sort(A, 0, 7)
54
54 3 7 5 1 4 2626 8 Merge-Sort(A, 2, 2), return A: Merge-Sort(A, 0, 7)
55
55 4 2626 8 Merge-Sort(A, 3, 3), base case A: Merge-Sort(A, 0, 7)
56
56 3 7 5 1 4 2626 8 Merge-Sort(A, 3, 3), return A: Merge-Sort(A, 0, 7)
57
57 3 7 5 1 2626 4 8 Merge(A, 2, 2, 3) A: Merge-Sort(A, 0, 7)
58
58 3 7 5 1 2626 4 8 Merge-Sort(A, 2, 3), return A: Merge-Sort(A, 0, 7)
59
59 3 7 5 1 2 4 6 8 Merge(A, 0, 1, 3) A: Merge-Sort(A, 0, 7)
60
60 3 7 5 1 2 4 6 8 Merge-Sort(A, 0, 3), return A: Merge-Sort(A, 0, 7)
61
61 3 7 5 1 2 4 6 8 Merge-Sort(A, 4, 7) A: Merge-Sort(A, 0, 7)
62
62 1 3 5 7 2 4 6 8 A: Merge (A, 4, 5, 7) Merge-Sort(A, 0, 7)
63
63 1 3 5 7 2 4 6 8 Merge-Sort(A, 4, 7), return A: Merge-Sort(A, 0, 7)
64
64 1 2 3 4 5 6 7 8 Merge(A, 0, 3, 7) A: Merge-Sort(A, 0, 7) Merge-Sort(A, 0, 7), done!
65
65 Merge-Sort Analysis cn 2 × cn/2 = cn 4 × cn/4 = cn n/2 × 2c = cn log n levels Total running time: (nlogn) Total Space: (n) Total: cn log n n n/2 n/4 2 2 2
66
66 Merge-Sort Summary Approach: divide and conquer Time Most of the work is in the merging Total time: (n log n) Space: (n), more space than other sorts.
67
67 Overview Divide and Conquer Merge Sort Quick Sort
68
68 Quick Sort Divide: Pick any element p as the pivot, e.g, the first element Partition the remaining elements into FirstPart, which contains all elements < p SecondPart, which contains all elements ≥ p Recursively sort the FirstPart and SecondPart Combine: no work is necessary since sorting is done in place
69
69 Quick Sort x < p p p ≤ x Partition FirstPart SecondPart p pivot A: Recursive call x < p p p ≤ x Sorted FirstPart Sorted SecondPart Sorted
70
70 Quick Sort Quick-Sort(A, left, right) if left ≥ right return else middle ← Partition(A, left, right) Quick-Sort(A, left, middle–1 ) Quick-Sort(A, middle+1, right) end if
71
71 Partition p p x < pp ≤ x p x < p A: A: A: p
72
72 Partition ExampleA: 48635172
73
73 Partition ExampleA: 48635172i=0 j=1
74
74 Partition ExampleA: j=1 48635172i=0 8
75
75 Partition ExampleA: 486351726i=0 j=2
76
76 Partition ExampleA: 4 8 635172i=0 3 83j=3i=1
77
77 Partition ExampleA: 43685172 i=1 5j=4
78
78 Partition ExampleA: 43685172 i=1 1j=5
79
79 Partition ExampleA: 43685172 i=2 16j=5
80
80 Partition ExampleA: 438572 i=2 16 7j=6
81
81 Partition ExampleA: 438572 i=2 16 2 2 8 i=3j=7
82
82 Partition ExampleA: 432678 i=3 15j=8
83
83 Partition ExampleA: 41678 i=3 25 4 2 3
84
84 A: 3 678 1 5 42 x < 4 4 ≤ x pivot in correct position Partition Example
85
85 Partition(A, left, right) 1. x ← A[left] 2. i ← left 3. for j ← left+1 to right 4. if A[j] < x then 5. i ← i + 1 6. swap(A[i], A[j]) 7. end if 8. end for j 9. swap(A[i], A[left]) 10. return i n = right – left +1 Time: cn for some constant c Space: constant
86
86 4 8 6 3 5 1 7 22 3 1 5 6 7 8 4 Quick-Sort(A, 0, 7) Partition A:
87
87 2 3 1 5 6 7 8 4 2 13 Quick-Sort(A, 0, 7) Quick-Sort(A, 0, 2) A:, partition
88
88 2 5 6 7 8 4113 Quick-Sort(A, 0, 7) Quick-Sort(A, 0, 0), base case, return
89
89 2 5 6 7 8 41 3 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 1, 1), base case
90
90 5 6 7 8 4 2 1 3 2 1 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 2, 2), return Quick-Sort(A, 0, 2), return
91
91 4 2 1 3 5 6 7 8 6 7 8 5 Quick-Sort(A, 0, 7) Quick-Sort(A, 2, 2), return Quick-Sort(A, 4, 7), partition
92
92 45 6 7 8 7878 66 2 1 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 5, 7), partition
93
93 456 7878 8 7 2 1 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 6, 7), partition
94
94 4567 2 1 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 7, 7) 8, return, base case 8
95
95 456 8 7 2 1 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 6, 7), return
96
96 45 2 1 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 5, 7), return 6 8 7
97
97 4 2 1 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 4, 7), return 5 6 8 7
98
98 4 2 1 3 Quick-Sort(A, 0, 7), done! 5 6 8 7
99
99 Quick-Sort: Best Case Even Partition Total time: (nlogn) cn 2 × cn/2 = cn 4 × c/4 = cn n/3 × 3c = cn log n levels n n/2 n/4 3 3 3
100
100 cn c(n-1) 3c 2c n n-1 n-2 3 2 c(n-2) Happens only if input is sortd input is reversely sorted Quick-Sort: Worst Case Unbalanced Partition Total time: (n 2 )
101
101 Randomized Quick Sort
102
102 Quick-Sort: an Average Case Suppose the split is 1/10 : 9/10 Quick-Sort: an Average Case cn ≤cn n 0.1n 0.9n 0.01n 0.09n Total time: (nlogn) 0.81n 2 2 log 10 n log 10/9 n ≤cn
103
103 Quick-Sort Summary Time Most of the work done in partitioning. Average case takes (n log(n)) time. Worst case takes (n 2 ) time Space Sorts in-place, i.e., does not require additional space
104
104 Summary Divide and Conquer Merge-Sort Most of the work done in Merging (n log(n)) time (n) space Quick-Sort Most of the work done in partitioning Average case takes (n log(n)) time Worst case takes (n 2 ) time (1) space
105
105 Quiz 6 (Show output) public static void main(String[ ] args) { int[ ] array = {4,18,16,3,5,21,7}; recursiveQuickSort(array, 0, array.length-1); System.out.println("The following array should be sorted: "); printList(array); System.exit(0); } public static void recursiveQuickSort(int[ ] list, int first, int last) { if(first < last) { int p = partition(list, first, last); printList(list); recursiveQuickSort(list, first, p-1); recursiveQuickSort(list, p+1, last); } Assume that printlist(list) prints the list separated by commas.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.