Download presentation
Presentation is loading. Please wait.
1
Hierarchical Graph Cuts for Semi-Metric Labeling M. Pawan Kumar Joint work with Daphne Koller
2
Aim To obtain accurate MAP estimate for Semi-Metric MRFs efficiently V1V1 V2V2 ……… …………… …………… …………VnVn Random Variables V = { V 1, V 2, …, V n }
3
Aim VaVa VbVb lili ab (i,j) a (i) : arbitrary ab (i,j) = s ab d(i,j) s ab ≥ 0 a (i) b (j) ljlj d( i, i ) = 0 for all i d( i, j ) = d( j, i ) > 0 for all i≠j Semi-metric Distance Function d( i, j ) - d( j, k ) ≤ d( i, k ) Metric Distance Function To obtain accurate MAP estimate for Semi-Metric MRFs efficiently
4
Aim VaVa VbVb lili ab (i,j) a (i) : arbitrary a (i) b (j) ljlj f* = arg min f a (f(a)) + ab (f(a),f(b)) ab (i,j) = s ab d(i,j) s ab ≥ 0 To obtain accurate MAP estimate for Semi-Metric MRFs efficiently
5
Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l3 w1w1 w2w2 w3w3 w4w4 w5w5 w6w6 w7w7 w9w9 w8w8 d( i, j ) : shortest path defined by the graph
6
Overview + f1f1 f2f2 f
7
Outline Simpler Metrics Labeling for Simpler Metrics Approximating General Metrics/Semi- Metrics Combining Labelings Results
8
r-HST Metrics Edge lengths for all children are the same l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 Graph is a Tree. Labels are leaves
9
r-HST Metrics Edge lengths decrease by factor r ≥ 2 w 2 ≤ w 1 /rw 3 ≤ w 1 /r l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3
10
Outline Simpler Metrics Labeling for Simpler Metrics Approximating General Metrics/Semi- Metrics Combining Labelings Results
11
r-HST Metric Labeling r-HST Metrics admit Divide-and-Conquer Divide original problem into subproblems l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3
12
r-HST Metric Labeling Subproblem defined at vertex ‘m’ l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 f* = arg min f a (f(a)) + ab (f(a),f(b)) such that f(a) m
13
r-HST Metric Labeling Trivial problem l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 f* = arg min f a (f(a)) + ab (f(a),f(b)) such that f(a) { l 4 }
14
r-HST Metric Labeling Original problem l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 f* = arg min f a (f(a)) + ab (f(a),f(b)) such that f(a) { l 1, …, l 6 }
15
r-HST Metric Labeling Problems get tougher as we move up Solve the simple subproblems (starting with trivial subproblems) Use their solutions to solve difficult subproblems
16
r-HST Metric Labeling w w w f1f1 f2f2 f3f3 Find new labeling using -Expansion
17
r-HST Metric Labeling w w w f1f1 f2f2 f3f3 Continue till we reach the root
18
Analysis w w w Mathematical Induction All variables V a such that f*(a) m m 1 bound on the unary potentials 2r/(r-1) bound on the pairwise potentials
19
Analysis w w w Mathematical Induction m Initial step of M.I. trivial (for leaf nodes) Given children, prove for parent
20
Analysis w w w a (f(a)) + i ab (f i (a),f i (b)) + i≠j ab (f i (a),f j (b)) f(a) = f i (a) f(b) = f i (b) f(a) = f i (a) f(b) = f j (b)
21
Analysis w w w a (f*(a)) + i ab (f i (a),f i (b)) + i≠j ab (f i (a),f j (b))
22
Analysis w w w a (f*(a)) + i ab (f*(a),f*(b)) + i≠j ab (f i (a),f j (b)) 2r r-1
23
Analysis w w w a (f*(a)) + i ab (f*(a),f*(b)) + i≠j ab (f*(a),f*(b)) d max d min 2 2r r-1
24
Analysis w w w d max = 2w(1+1/r+1/r 2 +….) d min = 2w
25
Analysis w w w i≠j ab (f*(a),f*(b)) 2r r-1 a (f*(a)) + i ab (f*(a),f*(b)) + 2r r-1
26
Analysis Overall approximation bound 2r/(r-1) Previous best bound 2r/(r-2) Not Tight ?
27
Overview + f1f1 f2f2 f
28
Outline Simpler Metrics Labeling for Simpler Metrics Approximating General Metrics/Semi- Metrics Combining Labelings Results
29
Approximating Metrics D = {d t (.,.), t = 1,2,… T}, d t (i,j) ≥ d(i,j) Pr(.) over the elements of D Given distance d(.,.) min D,Pr(.) max i≠j ∑ t Pr(t) d t (i,j) d(i,j)
30
Approximating Metrics l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 r-HST : hierarchical clustering of labels Use a clustering algorithm
31
Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 max d(i,j) = 2 M min i≠j d(i,j) > 1 Level ‘1’ Level ‘2’ Clustering at level 2?? Sample [1,2] Choose a permutation π of labels = { l 1,…, l h }
32
Approximating Metrics max d(i,j) = 2 M min i≠j d(i,j) > 1 Level ‘m-2’ Level ‘m-1’ Clustering at level m?? Choose a permutation π of labels Fakcharoenphol, Rao and Talwar, 2003 Sample [1,2]
33
Approximating Metrics l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l1l1 l2l2 l3l3 π d(1,4) ≤ 2 M-m ? Fakcharoenphol, Rao and Talwar, 2003
34
Approximating Metrics l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l1l1 l2l2 l3l3 π d(2,4) ≤ 2 M-m ? Fakcharoenphol, Rao and Talwar, 2003
35
Approximating Metrics l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l1l1 l2l2 l3l3 π d(2,1) ≤ 2 M-m ? Fakcharoenphol, Rao and Talwar, 2003
36
Approximating Metrics l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l1l1 l2l2 l3l3 π d(3,4) ≤ 2 M-m ? Fakcharoenphol, Rao and Talwar, 2003
37
Approximating Metrics l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l1l1 l2l2 l3l3 π Edge length = Diameter of cluster / 2 Fakcharoenphol, Rao and Talwar, 2003
38
Approximating Metrics Choose . Choose π Initialize root node as trivial cluster (all labels) Choose a cluster at level m-1 Run procedure to get clusters at level m Repeat for all clusters at level m-1 Stop when all clusters are singletons Repeat to get a set of r-HST metrics Fakcharoenphol, Rao and Talwar, 2003
39
Analysis d(i,j) ≤ ∑Pr(t) d t (i,j) ≤ O(log h) d(i,j) How many r-HST metrics ?? O(h log h) Charikar, Chekuri, Goel, Guha and Plotkin, 1998 Fakcharoenphol, Rao and Talwar, 2003
40
Approximating Semi-Metrics d(i,j) ≤ ∑Pr(t) d t (i,j) ≤ O(( log h) 2 ) d(i,j) How many r-HST metrics ?? O(h log h) d(i,j) - d(j,k) ≤ d(i,k)
41
Overview + f1f1 f2f2 f
42
Outline Simpler Metrics Labeling for Simpler Metrics Approximating General Metrics/Semi- Metrics Combining Labelings Results
43
Combining Labelings Use -Expansion !!
44
Analysis Bound for r-HST Labeling = O(1) Distortion for Metrics = O(log h) Bound for Metric Labeling = O(log h) Distortion for Semi-Metrics = O(( log h) 2 ) Bound for Semi-Metric Labeling = O(( log h) 2 )
45
Analysis When h < n, all known LP bounds can be obtained using move making algorithms.
46
Refining the Labeling Current energy Q(f; d)= Q(f; d t ) Q(f’; d) ≤ Q(f’; d t ), f’ ≠ f Find best f t according to d t (.,.) Fakcharoenphol, Rao and Talwar, 2003 r-HST Metric Labeling f = f t. Repeat till convergence.
47
Outline Simpler Metrics Labeling for Simpler Metrics Approximating General Metrics/Semi- Metrics Combining Labelings Results
48
Synthetic Data T. Lin.T. Quad.r-HSTMetS-Met Exp4864552094502214811247613 Swap4872151938510554848747579 TRW-S4750651318481324735546612 BP-S5094260269528414813647402 R-Swap4804551842--- R-Exp4799851641--- Our4785051587481464753846651 Our+EM4782351413481464738246638
49
Synthetic Data T. Lin.T. Quad.r-HSTMetS-Met Exp0.440.360.290.300.36 Swap0.650.860.520.510.47 TRW-S104.29178.97713.70703.82709.36 BP-S15.7845.63150.36129.68141.79 R-Swap1.9710.73--- R-Exp5.7830.73--- Our10.2212.841.8610.5812.25 Our+EM25.6664.085.0232.7557.50
50
Image Denoising
51
Exp Swap TRW-S BP-SOurOur+EM 75641,5.09 74426,25.2268226,174.33 105845,32.9472828,70.5572332,204.55
52
Image Denoising
53
Exp Swap TRW-S BP-SOurOur+EM 86163,26.13 89264,90.7473383,529.60 526969,115.8481820,294.7281820,465.57
54
Stereo Reconstruction
55
Exp Swap TRW-S BP-SOurOur+EM 78776,12.07 97999,34.5962777,263.28 126824,50.3865116,152.7465008,361.81
56
Scene Registration
57
Exp Swap TRW-S BP-SOurOur+EM 82036,1.66 83023,8.1581118,1371.11 84396,218.0481315,104.8981258,373.60
58
Scene Registration
59
Exp Swap TRW-S BP-SOurOur+EM 68572,1.27 69767,2.7867616,1058.25 70239,159.9867682,73.6167676,240.49
60
Scene Segmentation EnergyAccuracyTiming Exp30227260.623.18 Swap30238960.603.73 TRW-S30221160.68451.02 BP-S31082560.44102.14 Our30226560.64157.03
61
Future Work Tighter approximations for semi-metrics Higher-order potentials? Learning the parameters?
62
A Diffusion Algorithm for Upper Envelope Potentials M. Pawan Kumar Joint work with Pushmeet Kohli
63
Aim Efficient MAP estimation of sparse higher order potentials V1V1 V2V2 ……… …………… …………… …………VnVn
64
Aim Efficient MAP estimation of sparse higher order potentials Z In general, f(z) L c Some special cases computationally feasible
65
Lower Envelope Potentials Z min i z (i) + ∑ a C za (i,f(a)) f(z) L’ L c
66
Lower Envelope Potentials ENERGYENERGY
67
ENERGYENERGY
68
ENERGYENERGY
69
min i z (i) + ∑ a C za (i,f(a)) f(z) {0,1} ENERGYENERGY Robust P n Model
70
Lower Envelope Potentials + ∑ z ( min i z (i) + ∑ a C za (i,f(a)) ) f* = arg min f a (f(a)) + ab (f(a),f(b))
71
Lower Envelope Potentials f* = arg min f a (f(a)) + ab (f(a),f(b)) f(z) L’ + ∑ z z (f(z)) + ∑ a C za (f(z),f(a)) Use your favorite pairwise MRF algorithm
72
Upper Envelope Potentials Z max i z (i) + ∑ a C za (i,f(a)) f(z) L’ L c
73
Upper Envelope Potentials Silhouette Object Ray Camera center At least one voxel on the ray labeled ‘object’
74
Upper Envelope Potentials Silhouette Object Ray Camera center max i z (i) + ∑ a C za (i,f(a)) f(z) {0,1}
75
Upper Envelope Potentials + ∑ z ( max i z (i) + ∑ a C za (i,f(a)) ) f* = arg min f a (f(a)) + ab (f(a),f(b))
76
Upper Envelope Potentials + ∑ z t z f* = arg min f a (f(a)) + ab (f(a),f(b)) t z ≥ z (i) + ∑ a C t za (i) t za (i) ≥ za (i,f(a)) LP Relaxation
77
Dual max a min i a (i) + (a,b) min i,j ab (i,j) + z min i z (i) + (z,a) min i,j za (i,j) ∑ i z (i) = 1∑ j za (i,j) = z (i) za (i,j)≥ 0 a (i) = a (i) ab (i,j) = ab (i,j) z (i) = z (i) a (i) za (i,j) = za (i,j) ab (i,j)
78
Dual Without Z max a min i a (i) + (a,b) min i,j ab (i,j)
79
Diffusion VaVa 3 10 2 VaVa 5 1012 3 VaVa 4 2 0 2 3
80
Diffusion VaVa 3 00 1 VaVa 0 59 0 VaVa 4 2 0 1 5 3
81
VaVa 3 00 1 VaVa 0 59 0 VaVa 3 2 3 2 3 2
82
VaVa 6 23 3 VaVa 3 811 2 VaVa 3 2 2 2 2
83
Diffusion for Auxiliary Variable z 3 10 2 z 5 1012 3 z 4 2 z (i) = ’ z (i) + ( z (i) - ’ z (i)) a (i) za (i,j) = ’ za (i,j) + ( za (i,j) - ’ za (i,j)) za (i,j)
84
Diffusion for Auxiliary Variable max ( min i z (i) + ∑ a min i,j za (i,j) ) ∑ I z (i) = 1 z (i)≥ 0 ∑ j za (i,j) = z (i) za (i,j)≥ 0 Solve for Expensive
85
Diffusion for Auxiliary Variable max ( min i z (i) ) max ( min i,j za (i,j) ) ∑ I z (i) = 1 z (i)≥ 0 ∑ j za (i,j) = z (i) ? ∑ ij za (i,j) = 1 za (i,j)≥ 0
86
Diffusion for Auxiliary Variable max ( min i z (i) ) max ( min i,j za (i,j) ) ∑ I z (i) = 1 z (i)≥ 0 ∑ ij za (i,j) = 1 za (i,j)≥ 0 + ∑ z;i z (i) + ∑ za;i za (i,j) z;i + ∑ a za;i = 0 Fractional Packing Problem
87
Diffusion for Auxiliary Variable max ( min i z (i) ) max ( min i,j za (i,j) ) ∑ I z (i) = 1 z (i)≥ 0 ∑ ij za (i,j) = 1 za (i,j)≥ 0 + ∑ z;i z (i) + ∑ za;i za (i,j) z;i + ∑ a za;i = 0 Plotkin, Shmoys and Tardos, 1995
88
Diffusion for Auxiliary Variable z 3 10 2 z 5 1012 3 z 4 2 Run Standard Diffusion on
89
The Algorithm Choose a variable (random or auxiliary) If random variable, run standard diffusion If auxiliary variable, obtain and then run standard diffusion Repeat till convergence
90
Future Work Write the code Do the experiments A better way to get ??
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.