Download presentation
Presentation is loading. Please wait.
1
Important Random Variables EE570: Stochastic Processes Dr. Muqaiebl Based on notes of Pillai See also http://www.math.uah.edu/stat http://mathworld.wolfram.com
2
Continuous-type random variables 1. Normal (Gaussian): X is said to be normal or Gaussian r.v, if This is a bell shaped curve, symmetric around the parameter and its distribution function is given by where is often tabulated. Since depends on two parameters and the notation will be used to represent (3-29). (3-29) (3-30) Fig. 3.7 Thermal noise : Electronics, Communications Theory
3
2. Uniform: if (Fig. 3.8) (3.31) Fig. 3.8 3. Exponential: if (Fig. 3.9) (3-32) Fig. 3.9 Queuing Theory Coding Theory
4
4. Gamma: if (Fig. 3.10) If an integer 5. Beta: if (Fig. 3.11) where the Beta function is defined as (3-33) (3-34) (3-35) Fig. 3.11 Fig. 3.10 Queuing Theory
5
6. Chi-Square: if (Fig. 3.12) Note that is the same as Gamma 7. Rayleigh: if (Fig. 3.13) 8. Nakagami – m distribution: (3-36) (3-37) Fig. 3.12 Fig. 3.13 (3-38)
6
9. Cauchy: if (Fig. 3.14) 10. Laplace: (Fig. 3.15) 11. Student’s t-distribution with n degrees of freedom (Fig 3.16) Fig. 3.14 (3-41) (3-40) (3- 39) Fig. 3.15 Fig. 3.16 Related to Gaussian, Comm. Theory
7
12. Fisher’s F-distribution (3-42) The exponential model works well for inter arrival times (while the Poisson distribution describes the total number of events in a given period) The exponential model works well for inter arrival times (while the Poisson distribution describes the total number of events in a given period) Other distributions: Erlang (traffic), Weibull (faiure rate), Poreto ( Economics, reliability), Maxwell (Statistical) Other distributions: Erlang (traffic), Weibull (faiure rate), Poreto ( Economics, reliability), Maxwell (Statistical)
8
Discrete-type random variables 1. Bernoulli: X takes the values (0,1), and 2. Binomial: if (Fig. 3.17) 3. Poisson: if (Fig. 3.18) (3-43) (3-44) (3-45) Fig. 3.17 Fig. 3.18
9
4. Hypergeometric: 5. Geometric: if 6. Negative Binomial: ~ if 7. Discrete-Uniform: We conclude this lecture with a general distribution due (3-49) (3-48) (3-47) (3-46)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.