Download presentation
Presentation is loading. Please wait.
1
ReaxFF for Magnesium Hydrides Sam Cheung, Weiqiao Deng, Adri van Duin FF-subgroup meeting 9 Dec. 2003
2
Free Powerpoint template from www.brainybetty.com 2 Hydrogen storage: a brief history Objectives ReaxFF: general principles Building the ReaxFF for Mg-hydride File Format Applications Conclusion Topic Overview
3
Free Powerpoint template from www.brainybetty.com 3 H2H2 Hydrogen storage: a brief history Hydrogen Facts: Hydrogen is an odorless and colorless gas. BP of -252.77 o C. Density of 0.0899 grams/liter. The most abundant element on earth but less than 1% is in the form of H 2 Ways to produce H 2 : electrolysis, thermal dissociation of H 2 O, or photochemical splitting of H 2 O A clean synthetic fuel H 2 O vapour as the only exhaust gas Energy density by weight Chemical energy per mass of Hydrogen (142 MJ/kg) vs. that of other chemical fuels (liquid hydrocarbons ~ 47 MJ/kg) 1 Kg of hydrogen contains the same amount of energy as 2.1 Kg of natural gas or 2.8 Kg of gasoline.
4
Free Powerpoint template from www.brainybetty.com 4 Saftey issues of hydrogen vs. other fuels Lower risk of explosion Nontoxic! PropertyGasolineMethaneHydrogen Density (Kg/M 3 ) Diffusion Coefficient In Air (Cm 2 /Sec) Specific Heat at Constant Pressure (J/Gk) Ignition Limits In Air (vol %) Ignition Energy In Air (Mj) Ignition Temperature ( o C) Explosion Energy (G TNT/kj) Flame Emissivity (%) Toxicity 4.40 0.05 1.20 1.0-7.6 0.24 228-471 2197 0.25 34-43 High 0.65 0.16 2.22 5.3-15.0 0.29 540 1875 0.19 25-33 No 0.084 0.610 14.89 4.0-75.0 0.02 585 2045 0.17 17-25 No
5
How large of a gas tank do you want? Schlapbach & Züttel, Nature, 15 Nov. 2001 Volume Comparisons for 4 kg Vehicular H 2 Storage Storage remains a problem! Electric car with fuel cell (4kg H) Combustion engine (8kg H) Combustion engine (24 kg petrol) 400 km
6
Free Powerpoint template from www.brainybetty.com 6 Pressurized gas - Must be intensely pressurized to several hundred atmospheres (200 bar or more) - Stored in pressure vessel Condensed liquid state - Liquifying H 2 requires substantial energy - Boil-off is an issue for non-pressurized insulated tanks - Insulation is bulky Solid or liquid state as chemical hydrogen-rich compunds - methanol, methane, carbon - metal hydrides Storing Hydrogen From Patrovic & Milliken (2003)
7
Free Powerpoint template from www.brainybetty.com 7 MaterialH-atoms per cm 3 (10 -22 ) H 2 gas (200 bar)0.99 H 2 liquid (20K)4.2 H 2 solid (4.2K)5.3 MgH 2 6.5 Mg 2 NiH 4 5.9 TiFeH 2 6.0 LaNi 5 H 6 5.5 Materials with High Weight Hydrogen Mg hydrides light weight low manufacture cost high hydrogen-storage capacity reversible reaction Limitations High dehydriding temperature Slow adsorption kinetics Surface oxidation of magnesium Stability of the MgH2. Possible solutions Milling Catalyst Alloying with other metals
8
Free Powerpoint template from www.brainybetty.com 8 Reax FF: general principles Time Distance ÅngstromKilometres 10 -15 years QC ab initio, DFT, HF Electrons Bond formation MD Empirical force fields Atoms Molecular conformations MESO FEA Design Grains Grids ReaxFF
9
Free Powerpoint template from www.brainybetty.com 9 2-body multibody 3-body4-body System energy description
10
Free Powerpoint template from www.brainybetty.com 10 1.To get a smooth transition from nonbonded to single, double and triple bonded systems ReaxFF employs a bond length/bond order relationship. Bond orders are updated every iteration. 2. Nonbonded interactions (van der Waals, Coulomb) are calculated between every atom pair, irrespective of connectivity. Excessive close-range nonbonded interactions are avoided by shielding. 3. All connectivity-dependent interactions (i.e. valence and torsion angles) are made bond-order dependent, ensuring that their energy contributions disappear upon bond dissociation. 4. ReaxFF uses a geometry-dependent charge calculation scheme that accounts for polarization effects. Key Features
11
Free Powerpoint template from www.brainybetty.com 11 1.MD-force field; no discontinuities in energy or forces even during reactions. 2. User should not have to pre-define reactive sites or reaction pathways; potential functions should be able to automatically handle coordination changes associated with reactions. 3.Each element is represented by only 1 atom type in the force field; force field should be able to determine equilibrium bond lengths, valence angles etc. from chemical environment. General Rules
12
Free Powerpoint template from www.brainybetty.com 12 Strategy for parameterizing ReaxFF Step 1 -Identify interactions to be optimized -Identify relevant systems Step 2 -Build QC-trainset for bond breaking and angle bending cases for all relevant small cluster Cluster (DFT B3LYP 6-31G** ++ ) -Perform QC simulations on condensed phases to obtain EOS Periodic system (CASTEP GGA-PBE 4x4x2 k-space KE cutoff 380eV) Step 3 -FFopt and ReaxFF fittings Step 4 -Applications Parameterization of ReaxFF:
13
Free Powerpoint template from www.brainybetty.com 13 Training set Bonds Mg-H -Normal, under-, and overcoordinated systems Angles H-Mg-H H-H-Mg Mg-H-Mg H-Mg-Mg HCP BCC FCC SC diamond -MgH 2 -MgH 2 -MgH 2 CaF 2 -MgH2 Cluster:Condensed phase:
14
Free Powerpoint template from www.brainybetty.com 14 BIOGRF 200 DESCRP mgh2_b1.2 RUTYPE NORMAL RUN BOND RESTRAINT 1 3 1.2000 7500.00 0.50000 0.0000000 FORMAT ATOM (a6,1x,i5,1x,a5,1x,a3,1x,a1,1x,a5,3f10.5,1x,a5,i3,i2,1x,f8.5) HETATM 1 Mg 0.00000 0.00000 0.02469 Mg 1 1 0.00000 HETATM 2 H 0.00000 0.00000 1.62594 H 1 1 0.00000 HETATM 3 H 0.00000 0.00000 -1.19525 H 1 1 0.00000 END BIOGRF 200 DESCRP mgh2_a140 RUTYPE NORMAL RUN ANGLE RESTRAINT 2 1 3 140.00 2500.00 1.0000 0.000000 FORMAT ATOM (a6,1x,i5,1x,a5,1x,a3,1x,a1,1x,a5,3f10.5,1x,a5,i3,i2,1x,f8.5) HETATM 1 Mg -0.00006 0.00000 -0.00002 Mg 1 1 0.00000 HETATM 2 H -0.00006 0.00000 1.71361 H 1 1 0.00000 HETATM 3 H 1.10148 0.00000 -1.31278 H 1 1 0.00000 END XTLGRF 200 DESCRP diamond-mgh2_opt RUTYPE CELL OPT 0 CRYSTX 3.93314 3.93314 3.93314 90.00000 90.00000 90.00000 FORMAT ATOM (a6,1x,i5,1x,a5,1x,a3,1x,a1,1x,a5,3f10.5,1x,a5,i3,i2,1x,f8.5) HETATM 1 H 2.94972 2.90674 0.94026 H 1 1 0.00000 HETATM 2 Mg 1.96646 1.96644 1.96644 Mg 1 1 0.00000 HETATM 3 H 0.98315 0.94017 1.02607 H 1 1 0.00000 HETATM 4 H 0.98321 2.99259 2.90679 H 1 1 0.00000 HETATM 5 H 2.94977 1.02602 2.99268 H 1 1 0.00000 HETATM 6 Mg -0.00011 -0.00013 -0.00012 Mg 1 1 0.00000 FORMAT CONECT (a6,12i6) END File Format: geo trainset.in geo CHARGES mgh2 0.05 1 0.2519 mgh2 0.05 2 -0.1260 ENDCHARGES GEOMETRY mgh2 0.020 1 2 1.707 mgh2 0.500 2 1 3 179.000 ENDGEOMETRY ENERGY #Mg1-H3 (Mg-H 1.71) dissociation MgH2 10.0 + mgh2 /1 - mgh2_b1.2 /1 -51.5 7.0 + mgh2 /1 - mgh2_b1.4 /1 -14.0 5.0 + mgh2 /1 - mgh2_b1.5 /1 -5.4 2.0 + mgh2 /1 - mgh2_b1.6 /1 -1.2 2.0 + mgh2 /1 - mgh2_b2.0 /1 -6.8 1.0 + mgh2 /1 - mgh2_b4.1 /1 -73.1 #H-Mg-H angle in mgh2 1.0 + mgh2 /1 - mgh2_a160 /1 -1.41 2.0 + mgh2 /1 - mgh2_a140 /1 -5.74 4.0 + mgh2 /1 - mgh2_a120 /1 -13.47 10.0 + mgh2 /1 - mgh2_a100 / -25.72 10.0 + mgh2 /1 - mgh2_a80 /1 -44.57 25.0 + mgh2 /1 - mgh2_a60 /1 -73.47 25.0 + mgh2 /1 - mgh2_a40 /1 -73.29 # Relative Energy for Clusters 2.0 + mg2h4 /2 - mgh2 /1 -14.21 # Mg hcp (EOS) 20.0 + hcp0 /2 - hcp14 /2 -17.6 10.0 + hcp0 /2 - hcp17 /2 -6.2 2.0 + hcp0 /2 - hcp20 /2 -1.2 2.0 + hcp0 /2 - hcp_eq/2 -0.001 2.0 + hcp0 /2 - hcp27 /2 -1.3 5.0 + hcp0 /2 - hcp31 /2 -7.6 5.0 + hcp0 /2 - hcp35 /2 -10.8 ENDENERGY trainset.in
15
Free Powerpoint template from www.brainybetty.com 15 Results: 1. Charge Analysis Muliken Charges (Debye) Atom number QC ReaxFF -ReaxFF reproduces charge for clusters.
16
Free Powerpoint template from www.brainybetty.com 16 -ReaxFF gives a fair description for the Mg-H bond dissocation Bond distance (Å) Energy (kcal/mol) Mg (3s) 2 Results: 2. MgH/MgH2 bond dissociation
17
Free Powerpoint template from www.brainybetty.com 17 Results: 3. H-Mg-H Angle Bend Curve
18
Free Powerpoint template from www.brainybetty.com 18 -ReaxFF reproduces the EOS for the stable phases (BCC) -ReaxFF properly predicts the instability of the low-coordination phases (SC, Diamond) -Discrepancy in relative stability of FCC can be solved by further optimization. Volume/atom (Å 3 ) Energy (kcal/mole-Mg) Results: 4. Mg bulk metal
19
Free Powerpoint template from www.brainybetty.com 19 -ReaxFF reproduces the EOS for the stable phases ( -MgH 2, -MgH 2, -MgH 2 ) Volume/MgH 2 (Å 3 ) Energy (kcal/mol-MgH 2 ) Results: 4. Magnesium hydride crystal
20
Free Powerpoint template from www.brainybetty.com 20 Mg metal PhaseE ref (kcal/Mg atom) E Reax ref Reax HCP0.00 1.73 BCC1.640.40 1.621.75 FCC1.81-0.24 1.721.74 SC10.948.70 1.461.66 diamond19.0017.30 1.141.19 Relative stabilities of Mg bulk phase and Mg Hydride crystals Mg Hydride crystals PhaseE ref (kcal/Mg atom) E Reax ref Reax a-MgH 2 0.00 1.421.505 g-MgH 2 0.050.401.441.445 b-MgH 2 2.382.361.561.535 e-MgH 2 7.133.191.741.485 fluorite8.787.621.601.325 diamond9.880.521.431.420 -ReaxFF gives a fair description of the relative stability of Mg bulk phase and Mg-hydride crystal phases (longer ffopt run needed for better description) -ReaxFF properly predicts the instability of the low-coordination phases (SC, Diamond)
21
Free Powerpoint template from www.brainybetty.com 21 H-Atomic Adsorption Adsorption SiteHeight ( Å ) Literature* (kcal/mol) ReaxFF (kcal/mol) Top2.6661.2940.69 Bridge3.2875.5763.70 Centre-FCC3.4679.7278.14 Centre-HCP3.4479.2680.37 Centre-FCCBridgeTopCentre-HCP * M.C. Payne et. al., Chemical Physics Letters, Vol 212, p. 518 Calculated atomic energies, equilibrium bonding heights (above the top layer Mg atoms) for H absorption on the high-symmetry sites of Mg (0001).
22
Free Powerpoint template from www.brainybetty.com 22 Mg-particle aggregation MgH 2 -particle anneal (300-0K) Cook-off simulations on MgH 2 -particles Strategy for improving hydrogen adsorption and desorption process Reduction of H 2 dissociation barrier via Pt catalyst Applications
23
Free Powerpoint template from www.brainybetty.com 23 Mg 87 -particles (300K NVT-MD) Mg-particle aggregation
24
Free Powerpoint template from www.brainybetty.com 24 Mg 87 -particles (300K NVT-MD) MgH 2 -particle aggregation
25
Free Powerpoint template from www.brainybetty.com 25 MD-heatup of Mg 123 H 246 -cluster. Start temperature: 300K heatup rate 0.002 K/fs Cook-off simulations on MgH 2 -particles
26
Free Powerpoint template from www.brainybetty.com 26 HMg * Mg -Modify Mg * -H, Mg * -Mg * and Mg * -Mg force field parameters to optimize H 2 -release from nanoparticle -Find element that fits with optimal Mg * -characteristics Designer catalysts for H 2 -release
27
Free Powerpoint template from www.brainybetty.com 27 E(Mg * -H)=0.75*E(Mg-H) Mg * Mg -Weakened Mg * -H bond reduces H 2 -release temperature by about 150K Temperature regime: 300 to 1300K in 2.5 ps Comparison Mg 0.7 Mg 0.3 * H 2 and MgH 2 -cookoff runs
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.