Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hidden Markov Models David Meir Blei November 1, 1999.

Similar presentations


Presentation on theme: "Hidden Markov Models David Meir Blei November 1, 1999."— Presentation transcript:

1 Hidden Markov Models David Meir Blei November 1, 1999

2 What is an HMM? Graphical Model Circles indicate states Arrows indicate probabilistic dependencies between states

3 What is an HMM? Green circles are hidden states Dependent only on the previous state “The past is independent of the future given the present.”

4 What is an HMM? Purple nodes are observed states Dependent only on their corresponding hidden state

5 HMM Formalism {S, K,  S : {s 1 …s N } are the values for the hidden states K : {k 1 …k M } are the values for the observations SSS KKK S K S K

6 HMM Formalism {S, K,     are the initial state probabilities A = {a ij } are the state transition probabilities B = {b ik } are the observation state probabilities A B AAA BB SSS KKK S K S K

7 Inference in an HMM Compute the probability of a given observation sequence Given an observation sequence, compute the most likely hidden state sequence Given an observation sequence and set of possible models, which model most closely fits the data?

8 oToT o1o1 otot o t-1 o t+1 Given an observation sequence and a model, compute the probability of the observation sequence Decoding

9 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1

10 Decoding oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1

11 Decoding oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1

12 Decoding oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1

13 Decoding oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1

14 Forward Procedure oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Special structure gives us an efficient solution using dynamic programming. Intuition: Probability of the first t observations is the same for all possible t+1 length state sequences. Define:

15 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

16 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

17 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

18 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

19 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

20 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

21 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

22 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Forward Procedure

23 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Backward Procedure Probability of the rest of the states given the first state

24 oToT o1o1 otot o t-1 o t+1 x1x1 x t+1 xTxT xtxt x t-1 Decoding Solution Forward Procedure Backward Procedure Combination

25 oToT o1o1 otot o t-1 o t+1 Best State Sequence Find the state sequence that best explains the observations Viterbi algorithm

26 oToT o1o1 otot o t-1 o t+1 Viterbi Algorithm The state sequence which maximizes the probability of seeing the observations to time t-1, landing in state j, and seeing the observation at time t x1x1 x t-1 j

27 oToT o1o1 otot o t-1 o t+1 Viterbi Algorithm Recursive Computation x1x1 x t-1 xtxt x t+1

28 oToT o1o1 otot o t-1 o t+1 Viterbi Algorithm Compute the most likely state sequence by working backwards x1x1 x t-1 xtxt x t+1 xTxT

29 oToT o1o1 otot o t-1 o t+1 Parameter Estimation Given an observation sequence, find the model that is most likely to produce that sequence. No analytic method Given a model and observation sequence, update the model parameters to better fit the observations. A B AAA BBBB

30 oToT o1o1 otot o t-1 o t+1 Parameter Estimation A B AAA BBBB Probability of traversing an arc Probability of being in state i

31 oToT o1o1 otot o t-1 o t+1 Parameter Estimation A B AAA BBBB Now we can compute the new estimates of the model parameters.

32 HMM Applications Generating parameters for n-gram models Tagging speech Speech recognition

33 oToT o1o1 otot o t-1 o t+1 The Most Important Thing A B AAA BBBB We can use the special structure of this model to do a lot of neat math and solve problems that are otherwise not solvable.


Download ppt "Hidden Markov Models David Meir Blei November 1, 1999."

Similar presentations


Ads by Google