Download presentation
Presentation is loading. Please wait.
1
KRZYSZTOF FITZNER DOMINIKA JENDRZEJCZYK WOJCIECH GIERLOTKA * AGH University of Science and Technology, Faculty of Non- Ferrous Metal, Krakow, Poland *National Tsing-Hua University, Department of Chemical Ingeenering, Material Thermodynamics Laboratory Hsinchu,Taiwan EUROPEAN CONCERTED ACTION ON “Lead-free Solder Materials” COST 531
2
TASK DETERMINATION OF THERMODYNAMIC PROPERTIES AND PHASE EQUILIBRIA IN: FORCES OF WG8 1.Jan Vrestal and his group (Brno) 2.Dragana Zivkovic and her group (Bor) 3.Arkadij Popovic and Laslo Bencze (Liubliana and Budapest) 4.Krzysztof Fitzner, Dominika Jendrzejczyk, Wojciech Gierlotka (Krakow) Introduction
3
WORK DONE IN KRAKOW: E.M.F. MEASUREMENTS METHOD: GALVANIC CELLS WITH THE SOLID OXIDE ELECTROLYTE solid electrolyte Fig. 1
4
Ag-In-Sb Re + kanthal, Ag-In-Sb//ZrO 2 + Y 2 O 3 //NiO, Ni, Pt ( I ) Electrode reactions are: a) at the RHS electrode: 3Ni + 6e = 3 Ni + 3 O -2 (1) b) at the LHS electrode: 2 In + 3 O -2 = 6e + In 2 O 3 (2) Consequently, the overall cell I reaction is: 3 Ni O + 2 In = In 2 O 3 + 3 Ni (3) (4)
5
Ag-In-Sb Fig. 2 a) x Ag /x Sb =3:1 Fig. 2 b) x Ag /x Sb =1:1 Fig. 2 c) x Ag /x Sb =1:3
6
Ag-In-Sb Table 1 x Ag /x Sb =3:1 Table 2 x Ag /x Sb =1:1 Table 3 x Ag /x Sb =1:3
7
Ag-In-Sb G E = x Ag x In (L 0 AgIn + L 1 AgIn (x Ag – x In )) + x Ag x Sb (L 0 AgSb + L 1 AgSb (x Ag – x Sb )) + x In x Sb (L 0 InSb + L 1 InSb (x In – x Sb ))+ x Ag x In x Sb (x Ag L 0 AgInSb + x In L 1 AgInSb + x Sb L 2 AgInSb ) (5) Table 4
8
Ag-In-Sb This work 1200 K - calculated Activity of indium x In Fig. 3 x Ag /x Sb =1:1
9
Ag-In-Sb Fig.4 x In / x Sb = 2:3 T = 1253K
10
Ag-In-Sb Fig. 5 Liquidus in Ag – In - Sb system
11
Ag-In-Sb and Cu-In-Sn Sn In O Fig. 6
12
Ag-In-Sn ‘ In 2 O 3 ‘ + liquid SnO 2 + liquid Fig. 7
13
Ag-In-Sn Re + kanthal, Ag-In-Sn, ’In 2 O 3 ’ //ZrO 2 + Y 2 O 3 //NiO, Ni, Pt The overall cell reaction is: 3 NiO + 2 In = ‘In 2 O 3, ’ + 3 Ni (6) (7)
14
Ag-In-Sn e.m.f./[mV] x In Fig. 8 a) x Ag /x Sn =3:1 x In e.m.f./[mV] Fig. 8 b) x Ag /x Sn =1:1 Fig. 8 c) x Ag /x Sn =1:3 e.m.f./[mV]
15
Ag-In-Sn x In E(mV) = a + b*T 1.0363,72 – 0,1009 *T 1,21 0.8363,29 – 0,1065 *T 0,26 0.7358,91 – 0,1079 * T 0,31 0.6362,45 – 0,1165 * T 0,11 0.5371,80 – 0,1301 * T 0,47 0.4360,00 – 0,1296 * T 0,46 0.3375,30 - 0,1315 * T 0,50 x In E(mV) = a + b*T 1.0363,72 – 0,1009 *T 1,21 0.8373,34 – 0,1156 *T 0,45 0.7368,46 – 0.1152 * T 0,2 0.6360,75 – 0,1148 * T 0,48 0.5356,70 – 0,1163 * T 0,38 0.4361,28– 0,1257 * T 0,36 0.3356,63 – 0,1320 * T 0,38 x In E(mV) = a + b*T 1.0363,72 – 0,1009 *T 1,21 0.8370,15 – 0,1108 * T 0,25 0.7371,36 - 0,1160 * T 0,12 0.6332,63 – 0,0890 * T 0,51 0.5364,60 – 0,1210 * T 0,86 0.4355,34 – 0,1198 * T 0,55 0.3362,53 – 0,1343 * T 0,39 0.2343,36 – 0,1304 * T 0,37 Table 5 x Ag /x Sn =3:1 Table 6 x Ag /x Sn =1:1 Table 7 x Ag /x Sn =1:3
16
Ag-In-Sn T = 1273 K Activity of indium Fig. 9 a) Binary Ag-In x In emf method - calculated Activity of indium Fig. 9 e) Binary Sn-In x In COST database - calculated Activity of indium x In emf method Popovic Miki - calculated Fig. 9 c) x Ag /x Sn =1:1 Activity of indium x In emf method Popovic - calculated Fig. 9 b) x Ag /x Sn =3:1 Activity of indium x In emf method Popovic - calculated Fig. 9 d) x Ag /x Sn =1:3
17
Ag-In-Sn T = 12532 K Fig. 10 x Sn /x In =2:3 x Ag H mix (J*mol -1 )
18
Ag-In-Sn x In H mix / (J*mol -1 ) T= 1003K Fig. 11 x Ag /x Sn =1:1
19
Ag-In-Sn Fig. 12 Liquidus in Ag – In - Sn system
20
Cu-In-Sn ‘ In 2 O 3 ‘ + liquid SnO 2 + liquid Cu Fig. 13
21
Cu-In-Sn Re + kanthal, Cy-In-Sn, ’In 2 O 3 ’ //ZrO 2 + Y 2 O 3 //NiO, Ni, Pt The overall cell reaction is: 3 NiO + 2 In = ‘In 2 O 3 ’+ 3 Ni (8) (9)
22
Cu-In-Sn e.m.f./[mV] x In Fig. 14 a) x Cu /x Sn =3:1 e.m.f./[mV] Fig. 14 b) x Cu /x Sn =1:1 Fig. 14 c) x Cu /x Sn =1:3 e.m.f./[mV] x In
23
Cu-In-Sn x In E(mV) = a + b*T 1.0363,72 – 0,1009 *T 1,21 0.8368,25 – 0,1113 *T 0,43 0.7384,50 – 0,1113 * T 0,26 0.6365,67 – 0,1150 * T 0,54 0.5373,34 – 0,1248 * T 0,10 0.4368,73 – 0,1264 * T 0,69 0.3364,08 - 0,1297 * T 0,55 x In E(mV) = a + b*T 1.0363,72 – 0,1009 *T 1,21 0.8360,20 – 0,1048 * T 0,13 0.7365,78 - 0,1117 * T 0,45 0.6361,74 – 0,1124 * T 0,80 0.5366,90 – 0,1217 * T 0,26 0.4366,27 – 0,1272 * T 0,31 0.3358,56 – 0,1297 * T 0,44 0.2372,68 – 0,1517 * T 0,76 x In E(mV) = a + b*T 1.0363,72 – 0,1009 *T 1,21 0.8365,33 – 0,1086 * T 0,68 0.7368,13 - 0,1125 * T 0,15 0.6371,79 – 0,1197 * T 0,24 0.5367,16 – 0,1201 * T 0,24 0.4366,19 – 0,1249 * T 0,57 0.3366,68 – 0,1325 * T 0,62 0.2357,72 – 0,1344 * T 0,40 Table 8 x Cu /x Sn =3:1 Table 9 x Cu /x Sn =1:1 Table 10 x Cu /x Sn =1:3
24
Cu-In-Sn Activity of indium Fig. 15 e) Binary Sn-In x In COST database - calculated Fig. 15 a) Binary Cu-In T = 1273 K Activity of indium x In Fig. 15 c) x Cu /x Sn =1:1 Popovic, Bencze emf method Activity of indium x In Fig. 15 b) x Cu /x Sn =3:1 Popovic, Bencze emf method Activity of indium x In Fig. 15 d) x Cu /x Sn =1:3 Popovic, Bencze emf method Activity of indium x In Kang, Castanet
25
Cu-In-Sn Fig. 16 a) x Cu /x Sn =1:1Fig. 16 b) x Cu /x In =1:1 Fig. 16 c) x Sn /x In =1:1 T = 1073K x Sn H mix /(J*mol -1 ) Mikula et al x Cu H mix /(J*mol -1 ) Mikula et al x In H mix /(J*mol -1 ) Mikula et al
26
This work was supported by the State Committee for Scientific Research at AGH University Science and Technology, Faculty of Non- Ferrous Metals under fund number 11.11.180.125 and under COST 531 Action no. 112/E-356/SPB/COST/T-08/DWM 571/2003-2006
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.