Download presentation
Presentation is loading. Please wait.
1
Pariz-Karimpour Feb 2011 1 Chapter 3 Reference: Switched linear systems control and design Zhendong Sun, Shuzhi S. Ge
2
Pariz-Karimpour Feb 2011 2 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
3
Pariz-Karimpour Feb 2011 3 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
4
Pariz-Karimpour Feb 2011 4
5
5 Introduction
6
6 Introduction
7
7 ?Introduction
8
8 Introduction Example
9
Pariz-Karimpour Feb 2011 9 LetIntroduction
10
Pariz-Karimpour Feb 2011 10 Introduction
11
Pariz-Karimpour Feb 2011 11 This lecture provide: Basic observation on the ability and limitation of switching design Analyze and design of some switching for Stability and robustness Introduction
12
Pariz-Karimpour Feb 2011 12 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
13
Pariz-Karimpour Feb 2011 13
14
Pariz-Karimpour Feb 2011 14 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions 3.2.3. Periodic and Synchronous Switchings 3.2.4. Special Systems 3.2.5. Robustness Issues General Results
15
Pariz-Karimpour Feb 2011 15 Algebraic Criteria
16
Pariz-Karimpour Feb 2011 16 Algebraic Criteria
17
Pariz-Karimpour Feb 2011 17 Algebraic Criteria
18
Pariz-Karimpour Feb 2011 18 Example Algebraic Criteria
19
Pariz-Karimpour Feb 2011 19 Algebraic Criteria
20
Pariz-Karimpour Feb 2011 20 Example Algebraic Criteria
21
Pariz-Karimpour Feb 2011 21 Algebraic Criteria
22
Pariz-Karimpour Feb 2011 22 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions 3.2.3. Periodic and Synchronous Switchings 3.2.4. Special Systems 3.2.5. Robustness Issues General Results
23
Pariz-Karimpour Feb 2011 23 Does this equivalence still hold for switched linear systems To establish the equivalence, we need the concept of switched convergence Equivalence of the Stabilization Notions
24
Pariz-Karimpour Feb 2011 24 Equivalence of the Stabilization Notions
25
Pariz-Karimpour Feb 2011 25 Equivalence of the Stabilization Notions
26
Pariz-Karimpour Feb 2011 26 Equivalence of the Stabilization Notions
27
Pariz-Karimpour Feb 2011 27 Equivalence of the Stabilization Notions
28
Pariz-Karimpour Feb 2011 28 R2R2... RlRl R1R1 RiRi Equivalence of the Stabilization Notions
29
Pariz-Karimpour Feb 2011 29 R2R2... RlRl R1R1 RiRi Equivalence of the Stabilization Notions Since
30
Pariz-Karimpour Feb 2011 30 Equivalence of the Stabilization Notions
31
Pariz-Karimpour Feb 2011 31 Equivalence of the Stabilization Notions
32
Pariz-Karimpour Feb 2011 32 Equivalence of the Stabilization Notions
33
Pariz-Karimpour Feb 2011 33 Equivalence of the Stabilization Notions
34
Pariz-Karimpour Feb 2011 34 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions 3.2.3. Periodic and Synchronous Switchings 3.2.4. Special Systems 3.2.5. Robustness Issues General Results
35
Pariz-Karimpour Feb 2011 35 Periodic and Synchronous Switchings
36
Pariz-Karimpour Feb 2011 36 Periodic and Synchronous Switchings
37
Pariz-Karimpour Feb 2011 37 Periodic and Synchronous Switchings
38
Pariz-Karimpour Feb 2011 38 Periodic and Synchronous Switchings
39
Pariz-Karimpour Feb 2011 39 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions 3.2.3. Periodic and Synchronous Switchings 3.2.4. Special Systems 3.2.5. Robustness Issues General Results
40
Pariz-Karimpour Feb 2011 40 Special Systems
41
Pariz-Karimpour Feb 2011 41 Special Systems
42
Pariz-Karimpour Feb 2011 42 Special Systems
43
Pariz-Karimpour Feb 2011 43 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions 3.2.3. Periodic and Synchronous Switchings 3.2.4. Special Systems 3.2.5. Robustness Issues General Results
44
Pariz-Karimpour Feb 2011 44 Robustness Issues
45
Pariz-Karimpour Feb 2011 45 Robustness Issues
46
Pariz-Karimpour Feb 2011 46 Robustness Issues Proof of theorem 3.15 (continue)
47
Pariz-Karimpour Feb 2011 47 Robustness Issues Proof of theorem 3.15 (continue)
48
Pariz-Karimpour Feb 2011 48 Robustness Issues
49
Pariz-Karimpour Feb 2011 49 Robustness Issues
50
Pariz-Karimpour Feb 2011 50 Robustness Issues
51
Pariz-Karimpour Feb 2011 51 Proof of theorem 3.19 (continue) Robustness Issues
52
Pariz-Karimpour Feb 2011 52 Proof: By theorem 3.19 we have Robustness Issues
53
Pariz-Karimpour Feb 2011 53 Robustness Issues
54
Pariz-Karimpour Feb 2011 54 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
55
Pariz-Karimpour Feb 2011 55
56
Pariz-Karimpour Feb 2011 56 Periodic Switching
57
Pariz-Karimpour Feb 2011 57 0 12m …… 12m 12m Periodic Switching
58
Pariz-Karimpour Feb 2011 58 Define the fundamental matrix as: Periodic Switching
59
Pariz-Karimpour Feb 2011 59 Periodic Switching
60
Pariz-Karimpour Feb 2011 60 0 12m …… 12m 12m = 1 = 2 Periodic Switching
61
Pariz-Karimpour Feb 2011 61 0 12m …… 12m 12m = 1 = 2 Periodic Switching
62
Pariz-Karimpour Feb 2011 62 Periodic Switching
63
Pariz-Karimpour Feb 2011 63 i) The system state is bounded if the perturbation is bounded ii) The system state is bounded and convergent if the perturbation is bounded and convergent iii) The system state is exponentially convergent if the perturbation is exponentially convergent Periodic Switching
64
Pariz-Karimpour Feb 2011 64 i) Periodic Switching
65
Pariz-Karimpour Feb 2011 65 ii) Periodic Switching
66
Pariz-Karimpour Feb 2011 66 iii) Periodic Switching
67
Pariz-Karimpour Feb 2011 67 Periodic Switching
68
Pariz-Karimpour Feb 2011 68 Periodic Switching
69
Pariz-Karimpour Feb 2011 69 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
70
Pariz-Karimpour Feb 2011 70
71
Pariz-Karimpour Feb 2011 71 3.4.1. State-space-partition-based Switching 3.4.2. A Modified Switching Law 3.4.3. Observer-based Switching State-feedback Switching
72
Pariz-Karimpour Feb 2011 72 State-space-partition-based Switching
73
Pariz-Karimpour Feb 2011 73 Switching strategy State-space-partition-based Switching
74
Pariz-Karimpour Feb 2011 74 State-space-partition-based Switching
75
Pariz-Karimpour Feb 2011 75 State-space-partition-based Switching
76
Pariz-Karimpour Feb 2011 76 State-space-partition-based Switching
77
Pariz-Karimpour Feb 2011 77 State-space-partition-based Switching
78
Pariz-Karimpour Feb 2011 78 State-space-partition-based Switching
79
Pariz-Karimpour Feb 2011 79 State-space-partition-based Switching
80
Pariz-Karimpour Feb 2011 80 State-space-partition-based Switching
81
Pariz-Karimpour Feb 2011 81 State-space-partition-based Switching
82
Pariz-Karimpour Feb 2011 82
83
Pariz-Karimpour Feb 2011 83 function y=myfun2(x) if x(1)~=x(2);y=1; else y=0; end function y=myfun1(w) if w==1; y=[1;0];end if w==2; y=[0;1];end end function y=myfun(w) x=w(1:2);sigk=w(3); A1=[-2 0;0 1];A2=[1 0;0 -2];x0=[1;-1]; P=0.5*eye(2); Q(1).s=A1'*P+P*A1;Q(2).s=A2'*P+P*A2;r(1)=0.4;r(2)=0.4; if (x'*Q(sigk).s*x) > (-r(sigk)*x'*x) [c,y]=min([x'*Q(1).s*x, x'*Q(2).s*x]); else y=sigk; end State-space-partition-based Switching
84
Pariz-Karimpour Feb 2011 84 State-space-partition-based Switching
85
Pariz-Karimpour Feb 2011 85 State-space-partition-based Switching
86
Pariz-Karimpour Feb 2011 86 State-space-partition-based Switching
87
Pariz-Karimpour Feb 2011 87 State-space-partition-based Switching
88
Pariz-Karimpour Feb 2011 88 3.4.1. State-space-partition-based Switching 3.4.2. A Modified Switching Law 3.4.3. Observer-based Switching State-feedback Switching
89
Pariz-Karimpour Feb 2011 89 A Modified Switching Law
90
Pariz-Karimpour Feb 2011 90 Modified Switching strategy A Modified Switching Law
91
Pariz-Karimpour Feb 2011 91 A Modified Switching Law
92
Pariz-Karimpour Feb 2011 92 A Modified Switching Law
93
Pariz-Karimpour Feb 2011 93 A Modified Switching Law
94
Pariz-Karimpour Feb 2011 94 A Modified Switching Law
95
Pariz-Karimpour Feb 2011 95 A Modified Switching Law
96
Pariz-Karimpour Feb 2011 96 A Modified Switching Law
97
Pariz-Karimpour Feb 2011 97 A Modified Switching Law
98
Pariz-Karimpour Feb 2011 98 A Modified Switching Law
99
Pariz-Karimpour Feb 2011 99 A Modified Switching Law
100
Pariz-Karimpour Feb 2011 100 A Modified Switching Law
101
Pariz-Karimpour Feb 2011 101 A Modified Switching Law
102
Pariz-Karimpour Feb 2011 102 A Modified Switching Law
103
Pariz-Karimpour Feb 2011 103 A Modified Switching Law
104
Pariz-Karimpour Feb 2011 104 3.4.1. State-space-partition-based Switching 3.4.2. A Modified Switching Law 3.4.3. Observer-based Switching State-feedback Switching
105
Pariz-Karimpour Feb 2011 105 Observer-based Switching
106
Pariz-Karimpour Feb 2011 106 Observer-based Switching
107
Pariz-Karimpour Feb 2011 107 Observer-based Switching
108
Pariz-Karimpour Feb 2011 108 Observer-based Switching
109
Pariz-Karimpour Feb 2011 109 Observer-based Switching
110
Pariz-Karimpour Feb 2011 110
111
Pariz-Karimpour Feb 2011 111
112
Pariz-Karimpour Feb 2011 112 Observer-based Switching
113
Pariz-Karimpour Feb 2011 113
114
Pariz-Karimpour Feb 2011 114 Observer-based Switching
115
Pariz-Karimpour Feb 2011 115 Observer-based Switching
116
Pariz-Karimpour Feb 2011 116 1- Check the assumption 3.2 for the system 2- Repeat the system simulatrion by 3- Choose suitable L 1 and L 2 and repeat the simulation. 4- Examine the system for y=x 1 for the first system and y=x 2 for the second one. Exercises: 5- According to exercise 4 derive another condition for observer base switching.
117
Pariz-Karimpour Feb 2011 117 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
118
Pariz-Karimpour Feb 2011 118
119
Pariz-Karimpour Feb 2011 119 Combined Switching
120
Pariz-Karimpour Feb 2011 120 Periodic switching 0 12m …… 12m 12m Combined Switching
121
Pariz-Karimpour Feb 2011 121 State feedback switching Combined Switching
122
Pariz-Karimpour Feb 2011 122 Combined Switching
123
Pariz-Karimpour Feb 2011 123 3.5.1. Switching Strategy Description 3.5.2. Robustness Properties 3.5.3. Observer-based Switching 3.5.4. Extensions Combined Switching
124
Pariz-Karimpour Feb 2011 124 Switching Strategy Description
125
Pariz-Karimpour Feb 2011 125 Switching Strategy Description
126
Pariz-Karimpour Feb 2011 126 tktk t k+2 t k+1 Switching Strategy Description
127
Pariz-Karimpour Feb 2011 127 Proof: Switching Strategy Description
128
Pariz-Karimpour Feb 2011 128 Switching Strategy Description
129
Pariz-Karimpour Feb 2011 129 Switching Strategy Description
130
Pariz-Karimpour Feb 2011 130 Switching Strategy Description
131
Pariz-Karimpour Feb 2011 131 Switching Strategy Description
132
Pariz-Karimpour Feb 2011 132 Switching Strategy Description
133
Pariz-Karimpour Feb 2011 133 Switching Strategy Description
134
Pariz-Karimpour Feb 2011 134 Switching Strategy Description
135
Pariz-Karimpour Feb 2011 135
136
Pariz-Karimpour Feb 2011 136 By student (#2) Switching Strategy Description
137
Pariz-Karimpour Feb 2011 137 3.5.1. Switching Strategy Description 3.5.2. Robustness Properties 3.5.3. Observer-based Switching 3.5.4. Extensions Combined Switching
138
Pariz-Karimpour Feb 2011 138 Proof: By one of the student (#3) Robustness Properties
139
Pariz-Karimpour Feb 2011 139 By student (#3) Robustness Properties
140
Pariz-Karimpour Feb 2011 140 3.5.1. Switching Strategy Description 3.5.2. Robustness Properties 3.5.3. Observer-based Switching 3.5.4. Extensions Combined Switching
141
Pariz-Karimpour Feb 2011 141 Observer-based Switching
142
Pariz-Karimpour Feb 2011 142 Observer-based Switching
143
Pariz-Karimpour Feb 2011 143 Proof: By one of the student (#4) Observer-based Switching
144
Pariz-Karimpour Feb 2011 144 3.5.1. Switching Strategy Description 3.5.2. Robustness Properties 3.5.3. Observer-based Switching 3.5.4. Extensions Combined Switching
145
Pariz-Karimpour Feb 2011 145 Extensions
146
Pariz-Karimpour Feb 2011 146 Extensions
147
Pariz-Karimpour Feb 2011 147 Extensions
148
Pariz-Karimpour Feb 2011 148 Extensions
149
Pariz-Karimpour Feb 2011 149 Let
150
Pariz-Karimpour Feb 2011 150 Let t0t0 t4t4 t1t1 t2t2 t3t3 Extensions
151
Pariz-Karimpour Feb 2011 151 Extensions
152
Pariz-Karimpour Feb 2011 152 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
153
Pariz-Karimpour Feb 2011 153
154
Pariz-Karimpour Feb 2011 154 Numerical Examples
155
Pariz-Karimpour Feb 2011 155 Numerical Examples
156
Pariz-Karimpour Feb 2011 156 Numerical Examples
157
Pariz-Karimpour Feb 2011 157 Numerical Examples
158
Pariz-Karimpour Feb 2011 158 Numerical Examples
159
Pariz-Karimpour Feb 2011 159 Numerical Examples
160
Pariz-Karimpour Feb 2011 160 Numerical Examples
161
Pariz-Karimpour Feb 2011 161 Numerical Examples
162
Pariz-Karimpour Feb 2011 162 Numerical Examples
163
Pariz-Karimpour Feb 2011 163 Numerical Examples
164
Pariz-Karimpour Feb 2011 164 Numerical Examples
165
Pariz-Karimpour Feb 2011 165 Numerical Examples
166
Pariz-Karimpour Feb 2011 166 Numerical Examples
167
Pariz-Karimpour Feb 2011 167 Numerical Examples
168
Pariz-Karimpour Feb 2011 168 Numerical Examples
169
Pariz-Karimpour Feb 2011 169 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems Summary
170
Pariz-Karimpour Feb 2011 170 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
171
Pariz-Karimpour Feb 2011 171 Stabilizing Switching for Autonomous Systems Summary 3.1. Introduction
172
Pariz-Karimpour Feb 2011 172 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
173
Pariz-Karimpour Feb 2011 173 Stabilizing Switching for Autonomous Systems Summary 3.2. General Results 3.2.1. Algebraic Criteria
174
Pariz-Karimpour Feb 2011 174 Stabilizing Switching for Autonomous Systems Summary 3.2. General Results 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions
175
Pariz-Karimpour Feb 2011 175 Stabilizing Switching for Autonomous Systems Summary 3.2. General Results 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions 3.2.3. Periodic and Synchronous Switching
176
Pariz-Karimpour Feb 2011 176 Stabilizing Switching for Autonomous Systems Summary 3.2. General Results 3.2.1. Algebraic Criteria 3.2.2. Equivalence of the Stabilization Notions 3.2.3. Periodic and Synchronous Switching 3.2.4. Special Systems 3.2.5. Robustness Issues
177
Pariz-Karimpour Feb 2011 177 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
178
Pariz-Karimpour Feb 2011 178 Stabilizing Switching for Autonomous Systems Summary 3.3. Periodic Switching 0 12m …… 12m 12m
179
Pariz-Karimpour Feb 2011 179 Stabilizing Switching for Autonomous Systems Summary 3.3. Periodic Switching
180
Pariz-Karimpour Feb 2011 180 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
181
Pariz-Karimpour Feb 2011 181 Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Switching strategy
182
Pariz-Karimpour Feb 2011 182 Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Modified Switching strategy
183
Pariz-Karimpour Feb 2011 183 Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Observer Based Switching strategy
184
Pariz-Karimpour Feb 2011 184 3.1. Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
185
Pariz-Karimpour Feb 2011 185 Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching
186
Pariz-Karimpour Feb 2011 186 Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching (Robustness Property)
187
Pariz-Karimpour Feb 2011 187 Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching (Extension)
188
Pariz-Karimpour Feb 2011 188
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.