Download presentation
Presentation is loading. Please wait.
1
What’s in ICS.H22 2. Java –Useful because commonly used –Great example of an object- oriented language Object-oriented languages encourage code reuse and good code design => Code tends to be more reliable Java is also “strongly typed” so it’s harder to make mistakes –Learning how computers work: how programs are compiled and executed. 1. Algorithms and Data Structures –From simple to more complex –All very fundamental and useful –You practice algorithmtic thinking… 1+2: Learning algorithms in practice: Coding and executing them in java
2
Why Java ? Java is an elegant, powerful programming language simpler than other object-oriented languages [e.g., C++] Java is the basis of other modern programming languages [e.g., C#] Java is platform independent --- write once run everywhere Java supports multiple platforms (Unix, Windows, Mac), multiple types of devices (desktops, PDAs, phones, embedded devices) Java has good support good multimedia, graphics packages good client-server and network support (applet, serverlet) good, free Integrated Development Environments (IDE)
3
Java Programming Language: Designers Bill Joy BSD Unix guy from Berkeley founded Sun Microsystems (early 80s) “the network is the computer” (a little ahead of its time) –target workstation market missed the boat on PC revolution, retreated to Aspen, Colorado James Gosling early fame as the author of “Gosling Emacs” (killed by GNU) then onto Sun’s “NeWS” window system (killed by X) lesson: keeping things proprietary is kiss of death
4
Java Programming Language: History Joy and Gosling joined force, Sun subsidiary, FirstPerson, Inc. (1992) target consumer electronics: PDAs, appliances, phones, all with cheap infra-red kinds of networks need a language that’s small, robust, safe, secure, wired –started working on C++-- –soon gave up hope, decided to start from scratch Bad luck (again) bad luck: a little ahead of time –PDAs died with the demise of Apple Newton –switched to interactive TV (ITV) –the resulting language was called “Oak” –then ITV died too good luck (finally) –the net exploded in 1993 –Oak became Java, rest is history!
5
Learning Java just like learning any new language –syntax: “new words” –grammar: how to put them together –programming: telling a coherent story –library: use plots already written initially needs efforts, but pays off in the end !
6
Machine Languages r The “brain” of a computer is its Central Processing Unit (CPU) r A CPU can understand only very basic instructions, - e.g., store a given value at a memory location, do some arithmetic operations, compare two values, start to execute the instruction at another location r The set of instructions of a CPU form the machine language of the CPU Intel Pentium IBM PowerPC 750 for iMac
7
Machine Languages r Machine languages, or the instructions understood by computers, are represented by numbers for example, for Intel x86 (which includes Pentium), the numbers 10110000 01100001 give the instruction: copy number 97 to the processor register storage named ah. r Each type of CPU has its own specific machine language (why?) r Early programmers wrote programs using machine languages - the first programmer is Ada Byron (Lady Lovelace)
8
Higher-Level Programming Languages Other levels of programming languages were created to satisfy different objectives, e.g., make it easier for a human being to read/write programs: –assembly languages –intermediate languages –high-level languages
9
Assembly Languages movl (%edx,%eax), %ecx movl 12(%ebp), %eax leal 0(,%eax,4), %edx movl $nodes, %eax movl (%edx,%eax), %eax fldl (%ecx) fsubl (%eax) movl 8(%ebp), %eax leal 0(,%eax,4), %edx movl $nodes, %eax movl (%edx,%eax), Assembly language or simply assembly is a human-readable notation for the machine language it’s much easier to remember: movl %al, 97 than 10110000 01100001 Example assembly code fragment
10
High-Level Programming Languages int celsiusTemp = 32; double fahrenheitTemp; fahrenheitTemp = celsiusTemp * 9.0 / 5.0 + 32; if (fahrenheitTemp > 100) System.out.println (“Hot !”); else System.out.println (“OK !”); A high-level programming language enables a programmer to specify, in a high level (close to natural language), what data a computer will act upon, how these data will be stored, and what actions to take under various circumstances A high-level language is independent of CPU Example Java Code fragment
11
Programming Languages A program written in a high-level language must be translated into machine language before it can be executed on a particular type of CPU A compiler is a software tool which translates source code into a specific target language –typically, that target language is the machine language for a particular CPU type source code machine code compiler c, c++intel x86 gcc HelloWorld.c HelloWorld.exe e.g.,
12
Java Translation To be platform independent, Java cannot use the previous approach Java introduces an intermediate language called bytecode –Java bytecode is not the machine language for any traditional CPU, but a virtual machine –the Java compiler translates Java source code (.java files) into bytecode (in.class files) –therefore the Java compiler is not tied to any particular machine –Java is thus considered to be architecture-neutral
13
Java Execution To execute a Java program, another piece of software called an interpreter, translates between bytecode and the machine language –an interpreter is specific to a specific machine language –the interpreter understands java bytecode, and then issues instructions in the machine language for which it is written –we also say that an interpreter provides a java virtual machine (JVM) Another approach is to have a “just in time” (JIT) compiler which translates from bytecode to machine code on the fly, while interpreting it
14
Java Translation and Execution Java source code Java compiler Java interpreter for Windows Machine code JIT compiler Java bytecode Java interpreter for Mac
15
Related Topic: Programming Errors… A program can have three types of errors The compiler will find problems with syntax and other basic issues (compile-time errors) –If compile-time errors exist, an executable version of the program is not created A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (run-time errors) A program may run, but produce incorrect results (logical errors)
16
Java Programming: The Edit/Compile/Run Loop Programming in Java consists of three tasks –edit java source code (.java files) –compile java source code to generate bytecode (.class files) –execute/run/test bytecode using an interpreter
17
An Sample Java Program //========================================================== // // HelloWorld.java // // Author: Richard Yang // // Class: HelloWorld // // --------------------------------------------------------- // This program prints a string called "Hello World!” // //========================================================== public class HelloWorld { public static void main(String[] args) { System.out.println("Hello World!"); } // end of method main } // end of class
18
Comments Two types of comments in Java single-line comments use //… // this comment runs to the end of the line multi-lines comments use /* … */ /* this comment runs to the terminating symbol, even across line breaks */ Comments are ignored by the compiler: –used only for human readers (i.e., inline documentation) –they should be included to explain the purpose of the program and describe processing steps
19
Identifiers Identifiers are the words that a programmer uses in a program An identifier can be made up of letters, digits, the underscore character (_), and the dollar sign ($) An identifier cannot begin with a digit (why?) Java is case sensitive, therefore Total and total are different identifiers
20
Three Types of Identifiers 1. Identifiers chosen by ourselves when writing a program (such as HelloWorld ) 2. Identifiers chosen by another programmer, so we use the identifiers that they chose (e.g., System, out, println, main ) public class HelloWorld { public static void main(String[] args) { System.out.println(“Hello World!”); }
21
Identifiers: Reserved Words 3. Special identifiers called reserved words that already have a predefined meaning in the Java language - a reserved word cannot be used in any other way abstract boolean break byte byvalue case cast catch char class const continue default do double else extends false final finally float for future generic goto if implements import inner instanceof int interface long native new null operator outer package private protected public rest return short static super switch synchronized this throw throws transient true try var void volatile while Java revered words: they are all lowercase!
22
Java Program Structure In the Java programming language: –a program is made up of one or more classes –a class contains one or more methods Java application must always contain a method called main –a method contains program statements
23
Java Program Structure: Class public class HelloWorld {}{} // comments about the class class header class body starts with a left brace { and ends with a right brace } comments can be added almost anywhere class name is an identifier; convention we follow: capitalize each English word
24
Structure of a Java Class public class Classroom { }{ } int min_capacity = 0; int max_capacity = 100; int chairs = 30; … // instance variables // methods public int addStudents (int students) { … } public int addChairs (int chairs) { … } … public static void main (String[] args) { … }
25
Java Method and Statements Methods –building blocks of a class –each method name is an identifier, e.g. “addStudents” convention we follow: a method name starts lower case, with each additional English word capitalized (e.g., main, doMyJob ) –the main method each Java application must have one all programs start by executing the main method –braces are used to start ({) and end (}) a method Statements –every statement must end in a semicolon ;
26
Classes and Methods Methods and classes are language constructs to help organize a program –a method “organizes” a sequence of statements thus we can use a single method to refer to a bunch of statements –a class “organizes” a collection of methods (and data) Division of tasks into classes and methods supports object-oriented programming and creates good abstraction boundaries between different tasks and objects
27
Classes and Methods Provide Abstraction In the jargon of program design, they are structures which provide abstraction The objective of abstraction is to help programmers to hide (or ignore) the right details at the right time Why abstraction –a human being can only manage seven (plus or minus 2) pieces of information at one time if we group information into chunks, for example, by organizing complex software carefully into methods and classes, we can write more complex software
28
Methods and Classes A method provides an abstraction for a sequence of statements –initially, a method helps a programmer to refer to a a sequence of statements which she may reuse –more generally, a method defines a service a method takes input (parameters), performs some actions, and (sometime) returns a value –we invoke a method (call its service) and specify input/parameters A class provides an abstraction for objects with some common behaviors/services which we can tell them to perform for us –the services/behaviors provided by an object are defined by the methods in the class that defines the object –we create objects from its class definition: class serves as a blueprint
29
29 Example System.out is an object created from the PrintStream class Example: invoking the println method of the System.out object: System.out.println ("Whatever you are, be a good one."); Object created from PrintStream class method Information provided to the method (parameters) dot
30
Declaring Object Reference Variables In the general case, we need to first create objects –pre-created objects such as System.out are rare To “keep track” of created objects, we need variables to refer to the created objects –variables are identifiers A variable can be used to refer to different objects To avoid mixing different types of objects, we should specify the type of objects that a variable can refer to; thus we need to specify the type of a variable: ;
31
Declaring Object Reference Variables Example: String title; where String is a predefined class in Java; we also call title an object reference variable No object has been created with the above declaration of a variable The object itself must be created separately
32
Explicitly Creating Objects We use the new operator to create an object title = new String (“Java Software Solutions"); This calls the constructor method of class String, which is a special method that sets up the object (every class must have a constructor method) Now the variable title refers to an instance of String object title “Java Software Solutions"
33
Explicitly Creating Objects “new” operator in general: = new ([ ]); This calls the constructor method of class This calls the constructor method of class which (optionally) takes some parameters which (optionally) takes some parameters Now the variable refers to an object which is an instance of class Object of class, constructed using parameters title = new String (“Java Software Solutions");
34
Use Methods of Objects Once an object has been instantiated, we can use the dot operator to invoke its methods, e.g., count = title.length(); This procedure call invokes method “length” of class String, because “title” is a variable which refers to an object which is an instance of class String. Saying it another way: “title” is a variable of “type” String Methods (e.g. method “length” of class String) can return values (Here the return value is assigned to variable “count”) title = new String (“Java Software Solutions"); title “Java Software Solutions"
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.