Download presentation
Presentation is loading. Please wait.
1
Trees
2
Faster than linear data structures More natural fit for some kinds of data Examples? Why a tree?
3
Example Tree root ActivitiesTeachingResearch Sami’s Home Page PapersPresentationsCS211CS101
4
Terminology Root Parent Child Sibling External node Internal node Subtree Ancestor Descendant
5
Example Tree root ActivitiesTeachingResearch Sami’s Home Page PapersPresentationsCS211CS101 Root? Parent – papers, activities Children – cs101, research Sibling - teaching External nodes Internal nodes Subtree – left subtree of research? Ancestor – papers ancestor of activities? Descendant – papers descendant of home?
6
Ordered Trees Linear relationship between child nodes Binary tree – max two children per node –Left child, right child Do Trimmer Rollins TilkidjievaYucius ReardonBendersky root
7
Another Ordered Binary Tree Reardon Trimmer Bendersky TilkidjievaYucius RollinsDo root
8
Tree Traversal Pre-order traversal –Visit node, traverse left subtree, traverse right subtree Post-order traversal –Traverse left subtree, traverse right subtree, visit node
9
Example Pre-order Post-order Do Trimmer Rollins TilkidjievaYucius ReardonBendersky root
10
Example Pre – Rollins, Do, Bendersky, Reardon, Trimmer, Tilkidjieva, Yucius Post – Bendersky, Reardon, Do, Tilkidjieva, Yucius, Trimmer, Rollins Do Trimmer Rollins TilkidjievaYucius ReardonBendersky root
11
Another Example Reardon Trimmer Bendersky TilkidjievaYucius RollinsDo root Pre – Bendersky, Trimmer, Tilkidjieva, Reardon, Do, Rollins, Yucius Post – Do, Rollins, Reardon, Tilkidjieva, Yucius, Trimmer, Bendersky
12
In-order Traversal Traverse left subtree, visit node, traverse right subtree –Bendersky, Do, Reardon, Rollins, Tilkidjieva, Trimmer, Yucius Do Trimmer Rollins TilkidjievaYucius ReardonBendersky root
13
Another Example Reardon Trimmer Bendersky TilkidjievaYucius RollinsDo root In-order – Bendersky, Do, Reardon, Rollins, Tilkidjieva, Trimmer, Yucius
14
Implementation – TreeNode Data members? Functions? Name = Rollins
15
Implementation – Tree Data Members Functions –Pre/post/in-order print Smith Rollins root Brown
16
Implementation – Pre-order void preOrderPrint(TreeNode* curnode) { o.print(); if(curnode->getLeftChild() != NULL) preOrderPrint(curnode->getLeftChild()); if(curnode->getRightChild() != NULL) preOrderPrint(curnode->getRightChild()); } Tree* t = …; t->preOrderPrint(t->getRoot());
17
BSTs Elements in left subtree nodes are before (are less than) element in current node Element in current node is before (less than) elements in right subtree
18
find Operation Algorithm for finding element in BST Reardon Trimmer Bendersky TilkidjievaYucius RollinsDo root
19
find Algorithm if target is in current node return found else if target is before current node return find(left child) else return find(right child)
20
find Complexity Worst case Best case Average case
21
insert Operation Algorithm for inserting element in BST Reardon Trimmer Bendersky TilkidjievaYucius RollinsDo root
22
insert Algorithm if new_elt is before current and current left child is null insert as left child else if new_elt is after current and current right child is null insert as right child else if new_elt is after current insert in left subtree else insert in right subtree
23
remove Operation Algorithm for removing element in BST Reardon Trimmer Bendersky TilkidjievaYucius RollinsDo root
24
remove Algorithm elt = find node to remove if elt left subtree is null replace elt with right subtree if elt right subtree is null replace with left subtree find successor of elt (go right once and then left until you hit null) replace elt with successor call remove on successor
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.