Presentation is loading. Please wait.

Presentation is loading. Please wait.

Baltex SSG-XVII, Poznan, 24-26.11.04 Earth System Science Partnership for Global Change Research Start an integrated study of the Earth System, the changes.

Similar presentations


Presentation on theme: "Baltex SSG-XVII, Poznan, 24-26.11.04 Earth System Science Partnership for Global Change Research Start an integrated study of the Earth System, the changes."— Presentation transcript:

1 Baltex SSG-XVII, Poznan, 24-26.11.04 Earth System Science Partnership for Global Change Research Start an integrated study of the Earth System, the changes occurring to the System, and the implications for global sustainability. Integrated Regional Studies

2 Baltex SSG-XVII, Poznan, 24-26.11.04 Established 1980 Sponsors: WMO (1980+), ICSU (1980+) and IOC (1993+) World Climate Research Programme (WCRP) Objectives ♦ To determine the predictability of climate ♦ To determine the effect of human activities on climate

3 Baltex SSG-XVII, Poznan, 24-26.11.04 Achievements after 25 years of WCRP ♦ Significantly i mproved observing systems (atmosphere, ocean, land, cryosphere) ♦ Sophisticated coupled climate models ♦ Advanced assimilation techniques and forecast techniques / systems including ones based on ensembles of models ♦ L-T predictions possible, e.g. El Nino… ♦ Another level of knowledge about climate predictability and change ♦ etc.

4 Baltex SSG-XVII, Poznan, 24-26.11.04 Challenges for WCRP eamless prediction  Seamless prediction problem - medium range, weeks, decades, centuries  Prediction of the broader climate/Earth system  Demonstrate the usefulness to society of WCRP-enabled predictions & projections  Coordinate & implement activities to exploit fully - new & increasing data streams (environmental satellites & in situ observations i.e. the Argo system) - growth in capability & availability of computing - increasing complexity & breadth of models - increasing data assimilation ability

5 GEWEX 1988  SPARC 1992  WOCE 1990-2002 CLIVAR 1995  TOGA 1985-1994 WGNE WGCM WGSF IPAB WGSAT ACSYS/CliC 1994–2003/2000  SOLAS 2001 -> CliC 2000 

6 GEWEX CliC CLIVAR SPARC CliC SPARC GEWEX CLIVAR WCRP Domains  Global Energy and Water Cycle Experiment  Climate and Cryosphere  Climate Variability and Predictability  Stratospheric Processes and their Role in Climate

7 Baltex SSG-XVII, Poznan, 24-26.11.04 AIM  To facilitate prediction of the climate/earth system variability and change for use in an increasing range of practical applications of direct relevance, benefit and value to society COPES Coordinated Observation & Prediction of the Earth System Goals  Determine what aspects of the climate/earth system are and are not predictable, at weekly, seasonal, interannual and decadal through to century time-scales  Utilise improving observing systems, data assimilation techniques and models of the climate/earth system (-> IGBP, GCOS, NWP centres, …)

8 Baltex SSG-XVII, Poznan, 24-26.11.04 Priorities for the next decade (agreed at WCRP-Conference, Geneva, 1997)  Assessing the nature and predictability of seasonal to interdecadal climate variations at global and regional scales  Providing the scientific basis for operational predictions  Detecting climate change and attributing causes  Projecting the magnitude and rate of human-induced change (as input for IPCC, UNFCCC,...)

9 Baltex SSG-XVII, Poznan, 24-26.11.04 2005: after 25 years of WCRP New overarching and integrating Strategic Framework Prediction of entire climate system ( → Earth System) FGGE → extended weather prediction TOGA → seasonal prediction (tropics) THORPEX → deterministic 2nd week prediction esp high impact weather, GWE COPES → climate system prediction

10 Baltex SSG-XVII, Poznan, 24-26.11.04 Project Contributions:  observing system components  process understanding  model components  interaction with global system (impact and response)  assimilation & reanalysis  prediction & scenarios  contribution to specific themes Coordinated Observation and Prediction of the Earth System COPES (2005-2015) CliC SPARC GEWEX CLIVAR COPES

11 Baltex SSG-XVII, Poznan, 24-26.11.04 Coordinated Observation and Prediction of the Earth System (2005-2015) CliC SPARC GEWEX CLIVAR COPES TF-1 TF-2 TF-3 TF-4 TF-COPES TF-SP

12 GEWEX 1988  SPARC 1 992  WOCE 1990-2002 CLIVAR 1995  TOGA 1985-1994 SOLAS 2001 -> WG Obs Assim Model- ling Panel Coordinated Observation and Prediction of the Earth System CliC 2000  WGNE WGCM WGSF IPAB TFSP,TF-COPES

13 Baltex SSG-XVII, Poznan, 24-26.11.04 EXAMPLES of specific objectives Regional climate change Systematic errors in AGCM and CGCM Arid and desert climates Predictability of monsoons Contribution to IPCC WG1 report Improving projection of mean sea level rise Production of climate data sets Chemistry – climate models -> ES models

14 Baltex SSG-XVII, Poznan, 24-26.11.04  Task Force formed to define and initiate a process to plan & implement COPES: report to JSC26 in 2005  COPES discussion document available to WCRP stakeholders for comments, including suggestions for Specific Objectives WCRP – COPES : Status Reports to JSC Co-chairs: B.Hoskins, J.Church Representatives of core projects Chairs of modeling and obs. panels Experts in op. prediction, satellite obs., and funding of large programmes Will propose organisation and initial objectives of COPES

15 Baltex SSG-XVII, Poznan, 24-26.11.04 Modelling Panel  Coordinate modelling across WCRP  Focus on climate system prediction  Liaise with WGOA (assim., initial., reanalysis, data gaps)  Oversee data management in modelling activities  Liaise with IGBP and IHDP  Chair: J.Shukla  GEWEX member: J.Polcher

16 Baltex SSG-XVII, Poznan, 24-26.11.04 WG on Observation and Assimilation  Coordinates synthesis of global obs. through analysis, reanalysis, assimilation across WCRP  Facilitates interaction with WMO, IOC, GCOS, GOOS, etc. wrt to optimization of observing systems  Coordinates information and data management across WCRP  Takes over tasks of WG on satellite matters Chair: K.Trenberth Secretariat: G.Sommeria Members: J.Shukla, J.Key, W.Rossow, B.Randel, A.Lorenc, A.Simmons, G.Duchossois, M.Manton, E.Harrison, CLIVAR ? Space agencies? Other experts?

17 Baltex SSG-XVII, Poznan, 24-26.11.04 Proposal for development of global climate products (for WGOA) Systematic re-processing and coordinated re- analysis of all available observations acquired from various satellite sensors and other data sources since several decades Would be complementary to model re-analyses in order to define “present climate” Would serve as a benchmark to validate climate models and thus improve our ability to forecast climate evolution at all time scales Would contribute to the development of a coordinated global observation strategy

18 Baltex SSG-XVII, Poznan, 24-26.11.04 Task Force on Seasonal Prediction Determine extent to which seasonal prediction of global/regional climate is possible with current models and observations Identify the current limitations of the climate system model and observational data sets used to determine seasonal predictability Develop a coordinated plan for pan-WCRP climate system retrospective seasonal forecasting experiments Reported to the JSC in March 2004, the next report in March 2005

19 Baltex SSG-XVII, Poznan, 24-26.11.04 Hypothesis There is currently untapped seasonal predictability due to interactions (and memory) among all the elements of the climate system (Atmosphere-Ocean-Land-Cryosphere) Condition: Seasonal Predictability Needs to be Assessed with Respect to a Changing Climate –Use IPCC Class Models Free Running Model PDF Initial Condition (t=0) PDF t=limit of Predictability?

20 Baltex SSG-XVII, Poznan, 24-26.11.04 Contributions of WCRP Projects GEWEX: –provides guidance on how to initialize land surface –proposes/implements diagnostic studies & numerical experiments: understanding land-surface feedbacks CliC: –provides guidance on how to initialize cryosphere –proposes/implements diagnostic studies & numerical experiments CLIVAR: –provides guidance on how to initialize ocean-atmosphere –proposes/implements diagnostic studies & numerical experiments: understanding atmosphere-ocean coupling and variability SPARC: –provides guidance on how to prescribe atmospheric composition –provides guidance on how to initialize the stratosphere –proposes/implements diagnostic studies & numerical experiments

21 Baltex SSG-XVII, Poznan, 24-26.11.04 Ice sheets, cryo Hydrology Veg. C cycle Arctic Ocean Model Intercomparison Project (AOMIP) Arctic Regional Climate Model Intercomparison Project (ARMIP) Asian-Australian Monsoon Atmospheric GCM Intercomparison Project Atmospheric Model Intercomparison Project (AMIP) Atmospheric Tracer Transport Model Intercomparison Project (TransCom) Carbon-Cycle Model Linkage Project (CCMLP) Climate of the Twentieth Century Project (C20C) Cloud Model Feedback Intercomparison Project Coupled Model Intercomparison Project (CMIP) Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP) Dynamics of North Atlantic Models (DYNAMO) Ecosystem Model-Data Intercomparison (EMDI) Earth system Models of Intermediate Complexity (EMICs) ENSO Intercomparison Project (ENSIP) GEWEX Atmospheric Boundary Layer Study (GABLS) GEWEX Cloud System Study (GCSS) GCM-Reality Intercomparison Project for SPARC (GRIPS) Global Land-Atmosphere Coupling Experiment (GLACE) Global Soil Wetness Project (GSWP) Models and Measurements II (MMII): Stratospheric Transport Ocean Carbon-Cycle Model Intercomparison Project (OCMIP) Ocean Model Intercomparison Project (OMIP) Paleo Model Intercomparison Project (PMIP) Project for Intercomparison of Landsurface Parameterization Schemes (PILPS) Potsdam DGVM Intercomparison Project Potsdam NPP Model Intercomparison Project Project to Intercompare Regional Climate Simulations (PIRCS) Regional Climate Model Inter-comparison Project for Asia (RMIP) Sea-Ice Model Intercomparison Project (SIMIP) Snow Models Intercomparison Project (SnowMIP ) Stretched Grid Model Intercomparison Project (SGMIP) Study of Tropical Oceans In Coupled models (STOIC) WCRP F11 Intercomparison WCRP Radon Intercomparison WCRP Scavenging Tracer Intercomparison Ice sheet Model Intercomparison Project Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE) Seasonal Prediction Model Intercomparison Project-2 (SMIP-2) and Seasonal Prediction Model Intercomparison Project-2/Historical Forecast (SMIP-2/HFP)

22 Baltex SSG-XVII, Poznan, 24-26.11.04 Proposed ESSP Modelling Strategy 1.Experimentation with current GCMs for a)hindcasts and projections (IPCC), b)assimilation and prediction of the coupled system on seasonal to decadal time-scales 2.Improvement and validation of current GCMs used in 1 3.GCM components of the carbon cycle, dynamic vegetation, tropospheric chemistry, and a range of biogeochemical cycles 4.Extending GCMs to include these additional components of the Earth System in turn, as a basis for 1 WCRP IGBP WCRP/ IGBP cryosphere, CliC

23 Baltex SSG-XVII, Poznan, 24-26.11.04 Proposed ESSP Modelling Strategy 5.Development of more holistic models (including EMICs) to a)study the interactive aspects of the natural system a)simulate longer time-scales, e.g. Ice Age Cycle b)compare and validate with GCMs where possible 6.Development of models of the interaction between the human and natural systems based on the more holistic models 7.Simple models for design of the diagnosis of complex coupled models IGBP IGBP/ IHDP/ DIVERSITAS ALL

24 Baltex SSG-XVII, Poznan, 24-26.11.04 Time frame for COPES COPES will use the 1979-2004-2009 period to develop reference climate data sets and advanced forecasting techniques. This period will be used for retrospective forecasts of weekly?, seasonal, inter-annual and decadal variations The period 2010-2019 will serve as a testbed for real time forecasts Need and use of special observing periods? Defining and planning of COPES will continue and will be widely presented at the 2006 Global Change Conference which markes the WCRP’s 25 th anniversary

25 Baltex SSG-XVII, Poznan, 24-26.11.04 WOCE Final, San Antonio, 11-15 November 2002 ACSYS Final, St. Petersburg, 11-14 November 2003 CLIVAR 1 st Science Conference, Baltimore, 21-25 June 2004 3 rd SPARC General Assembly, Victoria, 1-6 August 2004 1 st SOLAS Open Science Conference, 13-16 October 2004 CliC 1 st Science Conference, Beijing, 11-15 April 2005 5 th GEWEX Science Conference, Irvine, 20-24 June 2005 2 nd Global Change Conference, Beijing, October (?) 2006 Recent and future WCRP Conferences

26 Baltex SSG-XVII, Poznan, 24-26.11.04 JPS for WCRP David Carson D/WCRP, ESSP V. Satyan D/modelling, WGNE, WGCM, START, MP Valery Detemmerman CLIVAR Gilles Sommeria GEWEX, WGOA Vladimir Ryabinin CliC, SPARC, fluxes Ann Salini Anne Chautard Margaret Lennon-Smith

27 Baltex SSG-XVII, Poznan, 24-26.11.04

28

29

30

31

32 We can produce a small number of different predictions with no idea of how reliable they might be Current Status of Climate Change Prediction

33 Baltex SSG-XVII, Poznan, 24-26.11.04 THE TASK (simplified, after Kevin Trenberth)  Take a large almost round rotating sphere ~8,000 miles (~12,800 km) in diameter.  Surround it with a murky viscous atmosphere of many gases mixed with water vapour, aerosols, etc..  Tilt its axis so that it wobbles back and forth with respect to the source of heat and light.  Freeze it at both ends and roast it in the middle.  Cover most of the surface with a flowing liquid that sometimes freezes and which feeds vapour into that atmosphere as it shifts up and down to the rhythmic pulling of the moon and the sun.  Condense and freeze some of the water vapour into clouds of imaginative shapes, sizes and composition.  Then try to predict the future conditions of that system for each place over the globe.

34 Baltex SSG-XVII, Poznan, 24-26.11.04 The Earth System: Coupling the Physical, Biogeochemical and Human Components

35 Coupled phys.-biol.-chem. Models 1980 1990 2000 2010 FGGE WOCE GEWEX TOGA CLIVAR ACSYS SPARC CliC Coupled Atm.-Ocean Models Earth System Models Operational Observing Systems Operational Prediction Systems Anthropogenic Climate Change, Detection & Attribution Seasonal to Decadal Forecasting Regional Anomaly Prediction Extended Range Weather Forecasts Data Assimilation Techniques Science core projects Tools Atmosphere OceanCoupled


Download ppt "Baltex SSG-XVII, Poznan, 24-26.11.04 Earth System Science Partnership for Global Change Research Start an integrated study of the Earth System, the changes."

Similar presentations


Ads by Google